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for a Network Synchronizer
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Abstract: In this paper we offer a formal, rigorous proof of the correctness of Awerbuch's

algorithm for network synchronization. We specify both the algorithm and the correctness

condition using the I/O automaton model, which has previously been used to describe and

verify algorithms for concurrency control and resource allocation. We show that the model

is also a powerful tool for reasoning about distributed graph algorithms. Our proof of

correctness follows closely the intuitive arguments made by the designer of the algorithm

by exploiting the model's natural support for such important design techniques as stepwise

refinement and modularity. In particular, since the algorithm uses simpler algorithms for

synchronization within and between 'clusters' of nodes, our proof can import as lemmas the

correctness of these simpler algorithms.
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A Modular Proof of Correctness

for a Network Synchronizer'

1 Overview

1.1 Verification methods and models

As computer science has matured as a discipline, its activity has broadened from writing

programs to include reasoning about those programs: proving their correctness and effi-

ciency, and proving bounds on the performance of any program that accomplishes the same

task. Recently distributed computing has begun to broaden in this way (albeit a decade or

two later than the part of computer science concerned with sequential, uniprocessor algo-

rithms). There are several reasons why particular care is necessary to prove the correctness

of algorithms when the algorithms are distributed. First, human thought tends to operate

sequentially, that is, we usually focus our attention on one aspect of a problem at a time.

This leaves us vulnerable when examining distributed protocols, where activity is happening

concurrently in several places in a system, since we can easily fail to consider the subtle

interactions between different activities. For example, unexpected race conditions can lead

to unexpected (and wrong) behavior. Second, distributed protocols are required to cope

with a certain level of nondeterminism in the system, such as variable message delays, vari-

able processor speeds, or even processor failures, and humans find it hard to deal with the

exploding number of different possibilities.

For these reasons one is not surprised that there have been several caes where algorithms

were published (and implemented) that seemed reasonable, but were later found to be in-

'This paper forms part of the first author's Ph.D. thesis *Topics in Distributed Algorithmns, Department .on 'l w
of Mathematics, Harvard University, August 1987. A preliminary version of the material of this paper has
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1 Ibosm ,



correct. A famous example is the AMPAnet routing algorithm. We believe that rigorousl y

proving the cornetkwe *ditribLded aleithi is an important task, especially for alg.

rithms that ae goiqg 'to be ed as uilding blocks of ether protocols. For example, when a

distributed leder osctien ipmotoecl isi rsd lo c s priwary copy for a replicated relation

in a distributed dabahem, aW umerbsint r about the behavior of the leader election will

propagate to undermine confidme ,ii hwe cp f the_ entiro detPbvte meagement

system.

Despite the juo nented aboua, =at wnk in digibutd algorithms contains only

informal corectness arguments and *till emits tigoarous proofs of correctness for the al-

gorithms desaoibed. The claim is 4dien beard that the formal techniques do not support

intuition and he prodh m 'too aaegil. QbWiously, the complexity of the verification is

related to the come ul owwul4* 4f the 4,azithm but ,. .' also be heavily influenced

by the choice 4,the mmcific m otion proeduwe.

Good todis for ditzibuted syateum a .alsis iim been sought by may researchers Mw

a long time. n,,,al kigic ((eg. fW I, d FlewA4osre-style methods(e4. JOG])

are among 4 bet &sws mA indeed how 6sw mod sunceadully to verffy a number of

distributed orkbhms. Wbile the scows asuig hue =stds ,do indeed demonstrate cor-

rectness of the l4aidms, du hen As me t h the wader to understand why *a slo-

rithms are cerect. TUe eder cabe lout a n .he stai ,of The step by step prod and lose

the intuitiom *ad the gikidb piatue.

Partia, 4&e pr bhoase i r di e w A that dn wader aoes 'the full gap between the

low level and the b* U p qecificatim 4d te problem. The desigrr of

the algorithm, hower, ohm conamixdmg the 4garMdnn co aining it, ,ften lSt argues im

terms of hih Swil *otis that cs quir setbe sditim, and coniders interaction bweea

those. At subesqut 6eieiW o those acivmties we -' ]Imed' by maeiing tm in turn.

Only at the ,%Wl s at e w kie 4(aa& mode in the sytem fully specified. The anethod

allows each zwfnsuaent to mmain manageey simple. To keep the designer's intuition,

ideally, the verificakien procedure should follow dosely the design process. That is, the

proof should Uellw the refinements. The verification procedure then would be structured so

that the prodof a&& swafinement zould be simple enough and the processes of design and
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verification would be brought together. To support the stepwise refinement described above,

the verification method has to be hierarchical.

Another vital feature of verification procedures is exposed when the designer of the

algorithm wishes to change an implementation of some activity, for example for optimization

reasons. This obviously results in a new algorithm. Often though, the redesign of one activity

does not affect others. In such cases, the verification method shoiJld he ahle to guarantee

that only the changed part needs to be proved correct anew. That is, the verification

method should be modular or compositional. Compositionality in proofs would also naturally

support the fundamental 'off the shelf building block' technique in algorithm design as it

allows the use of the correctness proof of the 'building block' in the proof of the algorithm

without the need to reexamine it. But we must be particularly careful when considering the

intuitive notion of modularity as referred to by algorithm designers. It is too often discussed

informally in terms of several pieces needed to solve 'subproblems' although the sense of

'subproblem' is not precise. It is not obvious that the pieces fit together in any precise sense,

especially when concurrency is considered. And as the algorithms that one tries to build

become more and more complex, the lack of formal notion of modularity becomes more and

more of a problem.

The commonly known verification methods do not seem to support both hierarchical and

modular reasoning in natural ways. Thus the invariant assertion method allows hierarchical

stepwise reasoning, but offers poor support for modularity when distributed systems are

concerned. The proofs in temporal logic on the other hand, are composable but leave a large

gap between the implementation and the specification.

In this paper we will prove the correctness of a network algorithm using the I/O automa-

ton model. The model was introduced by Lynch, Merritt and Tuttle in [LM] and [LT], and

it naturally supports both hierarchical and modular reasoning. From our experience with

this model, we feel that it enables one to provide rigorous proofs of correctness that follow

closely the informal arguments used by the designers of distributed algorithms to explain

their work. We describe specifications, intermediate refinements and algorithm as I/O au-

tomata, and then show that one 'implements' another. Also, the model includes a natural

notion of composition of two automata, that corresponds to the combined use of two algo-

3



rithms, md itb brW'mwm wee m wutioai in that the bevor of the'rewpitlm.

can be dedftoot fma, tw balwow of, al the cowpsent mamata,

An example of i remnnsiaftiasnthwodel am be fbund in. [LT] where it was used

to verify corfteawmof a'diskibuid MU1u nbiamr. The moduazit property of themodel

was exploited in; !WII tb dedum orretmes of ma n'paromor mutual exclusion algorithm4

from the corretnuof m an, abiUwy .2.pmw. mutuil oreinmn gswithm wlich is ud as

a subroutine within the main doithm, The model han. also been succeuafully appliedi to

describe and verify &aumber of dgwUlot rm meumeney controij recovery amid replication

management in nuted Wwnation apemmn for emuple [LMjFLMWI,GLl,[HLMWj. I

theme, the nodal' fatmis am omed t eaptut, faldyi sems intuitions of systm dbsipms,

such as 'the emouetwo at AVAi1W& Masegnnu @alp nda& to pmved in a aeial syatma,

as the aoraftavo d ma waWuYs vt h nplinaa wil tim etina that the rpliebawa

algorithm i* oeMal is & assutm a mouf.

Is this ppu, IM dmEONOW84 the em witk which thi mdI al slim one to prowe the

correctnesm of a etwork algorithm that sew a superposition of two different algorithms

operating eoeftA* Wae"Apieb jiwa ia kp@awt Aubgoak, sing hims that expea

formally ti efroegst* at to abdgoaih"M

1.2 Our ptr9

The algorithift *hasa ctreetnus *v prove in this paper is a distributed protocol for network

synchronizatioa. In daipniag algorith m to slv, problems in a distributed computing en-

vironment, it it important to uadentaad the assumptions being made about the processors

and the network connecting them. N fAwer assumptions are mads, it is more likely that they

will be satisfied by the hatdare avalable, but it is harder to And algorithms that work

correctly wheeve the uouiptoane are satisted. For example, most networks do not offr

reliable boun&d 60 the time a Imtage takes to arrive, so it is important to find algorithm

that work ecemetly in t qhrse/et s system, but it is very much easier to design algo-

rithms if the netwwtk is ap'hrektoe. Awerbuch ([Awl) proposed the use of a sepck rizer

that would enable me to convert any synchtonous graph algorithm into an algorithm that

performs evreetly In am asynbronom (but failure-free) network. Using a synchroniser in

4



this way has proved a successful methodology for solving asynchronous problems in efficient

ways ([Aw2]).

In lAw], a synchronizer (called -1 in that paper) is constructed for a network whose

topology is any fixed connected graph provided with a spanning forest subgraph, and a

distributed technique is given for finding a spanning forest subgraph for which the resulting

algorithm has low time and message complexity. The synchronization algorithm given is,

however, asserted to be correct for any spanning forest subgraph. The algorithm is derived

as a superposition of a simple synchronizer (called 0) executing within each 'cluster' (a

connected component of the spanning forest subgraph), and another simple synchronizer

(called a) that synchronizes between the clusters. This description helps to explain the

detailed algorithm, but no formal proof of correctness is offered in [Awl. We provide a

formal account of an algorithm closely based on Awerbuch's, and rigorously prove results

about its correctness. The proof of correctness is modular and hierarchical. It closely follows

the outline of the informal arguments of [Awl, by building on claims that express formally

the correctness of algorithms a and 6. Since these results have also not been formally proved

before, we include such proofs for the sake of completeness.

Our account of the synchronizer is given as follows. First we provide a top level speci-

fication for any network synchronizer by giving a single I/O automaton S that uses global

information about the system. Then we present the - algorithm itself, as a system Dist-

SysS of I/O automata, including one for each node of the graph with access only to local

information and communicating only along the edges of the graph. As this algorithm is

a superposition of two algorithms a and P, following Awerbuch's informal reasoning we

divide each node-automaton into two automata, one containing the state and operations

contributing to interciuster synchronization and the other containing the state and opera-

tions contributing to the intracluster synchronization. The two components do not interact

at all, except when the node is the root ('leader') of its cluster.

In the language of our model, to verify the correctness of the algorithm we need to prove

that the system DistSysS of I/O automata implements the specification automaton S. We

proceed in the proof by refining the global specification according to Awerbuch's intuitive

construction and defining for each refinement the corresponding correctness claim that needs

5



to be proved, until the level of nods algorithms is reached. We start with the global spedc-

cation S (see Fig. 1) sod refine it following t construction in [Awl by a system Sysf that

consists of one automaton SL for each chster, specifying the intracluster synchronizaton

behavior, and also a sin& coordinator automaton CS that specifies interciuster synchro-

nization (see Fig. 2). The cerectess claim for this refi ment is that all executions of the

composed system Sys ae acespAe bebaior of the global mecification S.

In the above refinement, automaton SL provides a specification for the intracluster syn-

chronization. According to [Awl the intracluster synchronization is implemented by algo-

rithm P. Thus, we further refine the intermediate specification SL by the distributed spec-

ification SysSL (see Fig. 3), that models the synchronizer P (a simple synchronizer using

communication over a tree). The specification includes a separate node automata NDSL for

each node in a cluster and a special automaton LESL for the leader, as well as an automaton

LISL to represent each link. The correctness claim for this refinement is in fact established

by the correctness proof for the algorithm P. If it were already carried out in our model, we

could use It he as is.

Next, we onelder the specification for the global intercluster synchronization coordinator

CS. In [Awl it is implemented by a distributed algorithm a, in which each cluster is a

participant. Thus we refine the global coordinator specification CS with a distributed one

SysCS (see Fig. 4), where clusters we modeled by automata CLCS that interact according to

algorithm a (a simple synchronizer, using all the edges of the graph). Thus, the correctness

claim of this reinement is established by the correctness proof of algorithm a. Here again

the proof could be imported if it wer available in the model.

Finally we consider the behavior of a cluster participating in a, which is specified by

automaton CLOS. Folklwing lAw] we refine it by a distributed specification SysCLCS that

specifies for *ah node in a duster its behavior contributing to the cluster's part in algorithm

a. This is done by giving a node automaton NDCS for each non-leader node in a cluster and

a leader automato& LECS for the leader node, as well as automata LiCS for the links (see

Fig. 5). The ctOctibee claim for this refinement then requires a proof that the the composed

system SyOCLCS implements the duster specification CLOS. This is the last claim for the

corrctnegs Pto Of the nOwOk synchronizer. It is due to the support for modularity and

0



OKpi)

S(G)

GOiq

Figure 1: S(G)

hierarchical reasoning provided by the model of (LT], that the results described are sufficient

to establish that the detailed node level specification DistSys8 correctly implement. the high

level specification S.

The above discussion has dealt with the safety properties of the algorithm. We also give

proofs of the hyvenes. and complexity analysis of the algorithm, by reasoning directly about

executions of the detailed system.

This paper shows how the properties of the 1/0 automaton model enable us to capture

formally some of the important intuitions used in designing algorithms. We believe that with

this model, it will not be difficult to prove the correctness of other algorithms whose design

was guided by these principles of stepwise refinement and modularity. We also hope that

the insights into the precise nature of modularity that are gained from this formalization

will be useful to the algorithm designers themselves.

2 1/0 Automata

The following is a brief introduction to a model that is proving useful for describing and

reasoning about distributed systems. The model is developed at length, with extensions to

express fairness properties, in [LTJ, where proofs can be found of many of the claims made

7[
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CLUSTEROK C,i)

LES(C)CLUSTERGO(C,i)

OKqi)

GO .i NDSL(q) NDSL(q')

rec(p,q) sedq~'
SAFE(p,i) ULSE(q,i)

LISL(p,q ISL(q,p')

send(p,q) rec(q,p')
SAFE(p,i ULSE(q,i)

OKpi

GO i NDSL(p) NDSL(p')

Figure 3: SysSL(C)



CLCS(D)

ree(C,D))
CLUSTERSAPZ(C~i

LI 
CS(C,D 

) 

CLCS(C')

CLUSTERGO C ) CLCS(C)

Figure 4: SyvCS
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CLUSTEOK((C)

send(q,t)
CLSTRSFE i NDCS(q) NDCS(q')

rec(p,q) send(q~p
READY(p,i) LUSTERSAFE(q,i)

LICS(p,q ICS(q,p')

send(p,q) rec(q,p')
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rec(a,p) NC~)NC~'
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Figure 5: SysCLCS(C)
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here.

An compemn as sur systenm will be nmmb&W by I/0 .stats. An I/O automaton

A has a set of eatces me o whih we designated a inial states. It has operatious,

each classiled - .ite a ws apexasio or a osapu sperasion, or an ,ternal opertSion.

Finally, it has a transition relation, which is a set of triples of the form (s',w,s), where a'

and s are states, and w is an operation. This triple means that in st'te a', the atomit on

can atomically do operation r ad change to state a. An element of the transition relation

is called a st p of the automaton. The omtput operatiom we intended to model the actica

that are triggerd by the automntna it", while the input operations model the actiom that

are triggered by the environment of the automaton. Internal operations are used to model

communication within the automatn (when we form an automaton from components, this

will include communication between pieces of the autoaton). We will always give the

transition relation of an automaton by giving pre- and postconditions for each operation r.

We give the preconditions as predicates depending on 9', and the postconditions as predicates

depending possibly on both s' and s. Theme are to be understood as saying that (s',rs) is

in the transition relationship exactly when the preconditions are true of state s' and the

postconditions are true of s' ad a.

Given a state a' and an operation w, we say that x is enabled in s' if there is a state a for

which (s',w,) is a step. We require the following condition.

Input Condition: Each input operation w is enabled in each state s'.

This condition says that an 1/O automaton must be prepared to receive any input operation

at any time. This is reflected in the fact that input operations have empty preconditions.

An execution of A is a (finite or infinite) alternating sequence sO,w 1, Sl,12,...,Ontn,...

of states and operations of A, beginning with a state, and (if finite) ending with a state.

Furthermore, so is a start state of A, and each triple (s',w,s) that occurs as a consecutive

subsequence is a step of A. From any execution, we can extract the schedule, which is the

subsequence of the execution consisting of operations only. Because transitions to different

states may have the same operation, different executions may have the same schedule. We

say that a schedule a of A can leave A in state a if there is some execution of A with schedule

a and final state s. We say that an operation w is enabled after a schedule o of A if there

12



exists a state s such that a can leave A in state a and r is enabled in s.

Given a schedule a of automaton A, we define the corresponding external schedule ext(a)

to be the subsequence of a consisting of those events that are occurrences of output oper-

ations or input operations (that is, we form ext(a) by removing from a the internal opera-

tions). We define the behavior of A, beh(A), to be the set of all sequences that are external

schedules of A. Formally, beh(A) = {ext(t) • o in a ..be |le of Al. If .4 and B are I/O

automata, we say that B implements A if A and B have the same output and input opera-

tions, and beh(B) C beh(A). The intuitive meaning of this is that B can be safely used for

any task for which A is satisfactory. It is clear that implementation is transitive, that is, if

B implements A and C implements B then C implements A. When B implements A and A

implements B, then we say that A and B are equivalent.

We describe systems as consisting of interacting components, each of which in an I/O

automaton. It is convenient and natural to view a system itself as an I/O automaton. Thus,

we define a composition operation for I/O automata, to yield a new I/O automaton. A set

of I/O automata may be composed if, for each component A the set of internal operations of

A is disjoint from the set of all operations of the other components, and in addition, the sets

of output operations of the various automata are pairwise disjoint. A state of the composed

automaton is a tuple of states, one for each component, and the start states are tuples

consisting of start states of the components. The operations of the composed automaton

are those of the component automata. Thus, each operation of the composed automaton is

an operation of a subset of the set of component automata. An operation is an output of

the composed automaton exactly if it is an output of some component. An operation of the

composed automaton is an internal operation exactly if it is an internal operation of some

component. An operation of the composed automaton is an input operation exactly if it is

not an output or internal operation of any component. (The output operations of a system

are intended to be exactly those that are triggered by components of the system, while

the input operations of a system are those that are triggered by the system's environment.)

During an operation x of a composed automaton, each of the components that has operation

x carries out the operation, while the remainder stay in the same state.

An execution or schedule of a system is defined to be an execution or schedule of the

13



automaton cimposed of the indvidaal auumata of the system. If a is a schedule of a

system with com ent A, th s we des by a4A the subsequece of a containing all the

operations of A. Clearf aIA inasaduale of A. The following lemma expresses formally

the idea that an opeahka isundec the onatrol of the component of which it is an output.

Lemna I Let d be a. schdol of a system S., and lot a = a'xr, where x is an output

operation of component A. Ie zIA it ..ehodule of A, thent a i a sechedule o $.

We now give tho lem n that sttes that implmeutatiom is a compositional property.

This is a mqtt' ream why moding algorithum by I/O automata permits modular proofs

of correctnem.

Lemma ,2 Suppeee tdy .dom.. A s the result of compoing Ai, and B is the result of

compsitt Mi. 2791i iqssment I 4 w each idex , the. 0 implements A.

When we ooudder a 9stem composed of several componeat., we are often not interested

in the intwasi woridag of the rsata, and s we wish to ignoe the operations that model

conmmineatioa Issom the coapsson W therefore introduce the hidu g transformation.

If A is an smomston ad it mo onbpat operation of A, then th result of hiding r in A is

the automaton with the som etates, operations and transition relation as A, but with r

classified a an itetal operatioa isted of a output operation. Note that the schedules of

the automto6 after hidiag ae exartly the sein as the shedules of the original automaton,

but the behavier, which is invole in proviug implementation, km changed. Clearly if x is

an operation of exactly one component of a system, the result of hiding x in that component

and then compoting the atomnata, i the sm.e a composing the automata and then hiding

w in the compoait Mi. We eso introduce the transformation that renames an operation of an

automaton. So lng n the remaning is done consistently throughout a system of automata,

and the new meme is not aiready used for any operation of any component, then the result

of renaming as operation and then composing is the same as the result of composing and

then renaming. Finally we observe that renaming an internal operation of an automaton, as

long as the new name is not already used for an operation of the automaton, does not alter

the behavior of the automaton.

14
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2.1 Distributed Solutions

We will use I/O automata to model both a global specification of the synchronizer, and

the local components of the distributed solution that we will give. Since the fundamental

composition mechanism described above is the simultaneous occurrence at several automata

of an operation, we have to be careful when modeling asynchronous communication. For

example, we would not represent message passing as a single operation shared by sender and

receiver. Instead we give explicit automata to represent the communication links, just as we

give an explicit automaton to represent each node. Sending a message is an operation that

occurs simultaneously at the sender and the link. Similarly, receipt of a message is a shared

operation between the link and the recipient. We use nondeterminism within the automaton

for the link to capture the asynchrony of the communication network. Thus, we model an

asynchronous unidirectional link from p to q, conveying messages from the set M, by the

following automaton.

Link Automaton: LIM (p,q)

Inputs:

send(p,q)M for M E M4

Outputs:

rec(p,q)M for M E M

state:

multiset contents, initially empty

transitions:

send(p,q)M

Postconditions

s.contents = s'.contents U M

rec(p,q)M

Preconditions

is



M E s'.Contents

Poetconditions

s.contents = s'.contents -'M

Suppose we are given a distributed problem. This will be specified by an automatoa

whose schedules are acceptable behaviors for a solution, together with a graph G describing

the topology of the network on which a solution has to run, and an assignment locale, that

gives for each operation of the specification automaton the node of the network at which it

occurs. We now define what it means to say that a system of automast provides a d"t*,tsd

solution to this problem. This means that the automaton that results from composing

the members of the system and then hiding all operations -that an not operations of the

specification, is an implementation of the specification in the sense of the previous section,

and in addition, the system satisfies the following conditions:

1. The system comuists of am aumton NO)EO() ,fr alh wde pef tihe raph, getblr

with, far ea&h "p (Vg)Jof Ane eapk G., 1w. link soomaft LI(p~q) and I(q&) ae

given seove far a emitame cbaim f message 2.

2. For em&h operation r of the system, either there is a node p such that r is an operatiou

of the node automaton NODE(p) (and no other compmeMt), or there are nodes p and

q so that ir is an input of NODE(p) and an output of L~q,p) (and operation of no

other component), or there sam nodes p and q so that w is an output of NODE(p) and

an input of LI(p q) (and a operation of no other component).

3. Each operation r of the specification automaton is an operation of NODE(p), where

p=locale(w) is the node to which the operation is migned, and of no other component.

3 The Algorithm

The algorithm will run on a network whose topology is given as a connected graph G,

described by giving for each node p a set of nodes neighbors(p). The nodes are partitioned

into clusters, so that each cluster is connected. Each cluster's subgraph has a distinguished

16
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rooted spanning tree. This data is given as follows: for each cluster C there is a node

leader(C), and for each node p E C there is another node parent(p), which is the next node

on the path to leader(C). If p = leader(C) then parent(p) = nil. We let children(p) denote

the set of nodes q such that parent(q) = p. We say that cluster D is a neighbor of cluster

C, written D E Neighbors(C), if there are nodes p and q with p E C, q E D, and q E

neighbors(p). For each pair of neighboring clusters, a single distinguished 'preferred' Mdge

is chosen between them. This is indicated by giving for each node p a set preferred(p) of

nodes that are neighbors of p along preferred edges. We say that a node is special if any of

its descendants in the tree (that is, itself, or its children, or its children's children, etc.) have

neighbors along preferred edges. We let specialchildren(p) denote the subset of children(p)

containing special nodes. Thus when there are at least two clusters, the special nodes form

the least subtree of a cluster's tree that has the same root and contains all the endpoints of

preferred edges.

3.1 The Use of the Synchronizer

We briefly discuss the architecture of the context in which the synchronizer is placed, and

show how I/O automata can be used to model all the pieces of such a system. At each node

of the asynchronous network is a proccess that executes the code for a graph algorithm in

a synchronous system. We model the process at node p by an I/O automaton CLIENT(p),

whose operations are synch-receive(p,i)AI and synch-send(p,i)M, where M/ is a collection

of messages tagged with source or destination information. Round i of the synchronous

algorithm at node p is begun when the automaton CLIENT(p) receives an input operation

synch-receive(p,i)X, where the messages in the set X/ are those that were included with

destination p in the sets of menages in preceding synch-send(q,i-1) operations. When the

node has finished local processing of these messages, it performs an output operation synch-

send(p,i)/' for a new set of messages and destinations. Different synchronous algorithms

will be described by different I/O automata, and we do not constrain the choice except

by simple syntactic conditions, such as requiring each p not to perform a synch-send(p,i)

operation unless a synch-receive(p,i) operation had occurred earlier, and not to perform a

synch-send(p,i) operation if a synch-send(p,i) operation had already occurred.

17



At adhi node o h ewi~eessa a htue h sxo~loscmui

cation syestm~otultkiheneqem~s of 411e i tt'slgkrtthmo1d 'wlvotd and tecee

acknowhedgemmtI-~srAmmsm. Thus~pm~ue th - vpiibilty-ofmtfyiig tbe-.yn-

it must also delay dei wo ittag~tmrudimetes. unit'l the'~nchro-

nizer has given permumion illmetewt- kif vand i+41 wt't vh~i. V4 rn thi-i Orbc.Gv lt.

node p by an 1/0 autata f-MCKTAM(p). fte opora scwdfM1VWN~4p) includevuynch-

send(p,i)A a nd . d~ wo~) A( whidh 4m ifte6 wish <kMBW ). MO(NT-END(p)

also has operatic.. d(,qM~), (q&M'(), -dpq*3Es~iand ree(qp)ACK-

M(i), where Mad wa' u wnd ic q sof e ciimt Wlgeiari. Then bperatioe -are

shared with liuk sumom bt - V ud q. Si~mail the lwifttfth %I ybchtbe is

modelled by inpit oeraticu GOW&Ab wWinldiosh that *11 kmobA i4 i e bbt-hg sent

to p have alrendy ankid (and %but losemb th an bb bdbftd 40 a it tad deklvered

to the client alpwthzn at any time ca the client ha hMI"~ ft4 i-t), WA, byr fttput

operations OX(pi), which indicate to dhe synhwoubee" th at bw~ftomm bo been

received at p for &Il round i inem 41 the ceawt &%wkvlt*a oft m ~ froft V.

we give here the explicit "strnctiiia of the I/0 etoesaca F'R tNDA P). we

use the notations described earlier, ad as we will esmm #6 1* i " d tot al8 othr 1/0

automata that we give, tha the potedtcm fec ptte m Wds mpitly the diuse

s.v = 8)v for ea&h coup met T of tbe A"a 0 Whemmr that O~ea .'r is bt n.Wmi 64

in the explicitly given p a tmditios.

Frosst-ead, FRONT-LVD(p)

Inputs:

synch-send(p,i)NV, for Nt a multist of (mesage,node) pairs, i positive

rec(q,p)M(i), for q a node, MI a meesage, i positive

rec(q,p)ACK-M(i), fmr q a node, MI a meesage, i positive

GO(p,i), for i positive

Outputs:

synch-receive(p,i)M, for Mi a multiset of (meseagenode) pairs, i positive

send(p,q)M(i), fow q a node, M a message, i positive



send(q,p)AOK-M(i), for q a node, M a message, i positive

OK(p,i), for i positive

State:

array GOrec[iJ, initially all false

array OKsent[ij, initially all false

array synchiend [ii, initially all false

array synchreceive(i], initially all false

multiset mess, initially empty

multiset ack, initially empty

multiset unacked, initially empty

array of multisets mess-received[iJ, initially all empty

transitions:

synch-send (p ,i) XI

Postconditions

x.synchsend[i] = true

$-mesas = a' mesa U {(p,q)M(i) : (M,q) E )

rec(q,p)M(i)

Postconditions

s.ack = s'.ack U {(p,q)ACK-M(i)}

s-mess-receivedi = a' .mess-receivedi u {(M,q)}

rec(q,p)ACK-M(i)

Postconditions

aunacked. = s'.unacked - {(p,q)M(i)}

GO(p,i)

s.GOrecfiJ = true
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synch-roceive(pA).V

Preconditions

o'.GOrec[i) - true

i or 8u'.Ayiih 4-11 tmu

Poetconditiaims

s.*yacmdre~vu* Ormi

9end(p,q)Idli)

Precoditi

(pq)kE(i 4E .mmm

PaecadMOID

5-gM = @Pm=~ - f~ )
a.unaabe = (.am lv ffr~Il) )

send(p,q)AcMw-iUi

Precoudiis

(p,q)M to e s'.in

Postconamm

9ak= s'.ack - f~~"

OK(pja)

Precadisim

s,.8yagbmd* bin

u'.unasha Iu. m.mus embau m slmm (p ) fw O q *w M
s'.~mtf hawib

Postcoadiiua
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In the next section we will give a specification synchronizer automaton S(G), which uses

global information about the OK(q,i) operations at all nodes to determine when to perform

GO(p,i+l). In particular, S(G) does not perform GO(p,i+l) until OK(q,i) has occurred

for all q E neighbors(p). In Fig. 6 we illustrate all these automata. When S(G) performs

GO(p,i+l), every neighbor of p has received an acknowledgement for every round i message

sent. In particular, acknowledgements have been received for every round i message sent

to p, and therefore every such message must have arrived at p. Thus FRONT-END(p) will

correctly deliver to CLIENT(p) all the round i messages in the synch-receive(p,i+l) opera-

tion. It is straightforward to use the techniques of [LM] to turn this argument into a formal

proof that the system illustrated behaves (as far as each CLIENT automaton can tell) just

like a synchronous system, that is, one in which the clients share their operations with a

single communication system automaton, that accepts collections of messages in synch-send

input operations from all nodes, sorts out the destinations appropriately, and bundles the

messages and delivers them in synch-receive output operations after all client nodes have

finished the previous round. In this paper, we concentrate on the problem of showing that

a complicated but distributed synchronizer implements the simple but centralized specifica-

tion synchronizer, where we illustrate the I/O automata model's support for compositional

modularity.

3.2 Specification

We give a single specification automaton S(G), called a synchronizer for the graph G. This

has an input operation OK(p,i), which is an indication from the front-end at node p that

every message it sent in round i has arrived at its destination. When every neighbor q of a

node p has issued its OK(q,i-1) operation, the synchronizer can issv 3 an output operation

GO(p,i), which indicates to the front-end at node p that it can commence round i of the

synchronous algorithm as soon as the client has finished its local processing for round i-I,

since there can be no more round i-1 messages in transit to p.

Synchronizer: S(G)
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figuu' 6: Th. whole aystom
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Inputs:

OK(p,i) for p E G, i positive

Outputs:

GO(p,i) for p E G, i positive

State:

array OKrec[pi], initially all false

array GOsent[p,i], initially all false

transitions:

OK(p,i)

Postconditions

s.OKrec[p,il = true

GO(p,i)

Preconditions

i = 1 or ('.OKrecrqi-1] = true for all q E neighbors(p))

i= 1 or s'.GOsent[p,i-lj = true

r'.GOsent[p,i] i false

Postconditions

s.GOsent[p,i] - true

3.3 The Detailed Distributed Algorithm

We now give the distributed solution that is closely based on Awerbuch's algorithm -Y,

translated into the I/0 automaton model. We give an automaton ND(p) for each node p of

the graph that is not a leader of a cluster, and an automaton LE(C) for the leader of each

cluster C. We also give link automata for each edge of the graph G. The detailed code is

given in Appendix 1, together with an account of the relationship between it and the code

in [Awl.

23
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To help the reader understand the algorithm, we give an informal account, paraphrasing

[Aw], of the low level working of the system. Once a node p that is a leaf of its cluster's

tree has received the OK(p,i) input operation (indicating that the node is safe, that is, every

message that node sent in the i-th round has been received) p sends a SAFE(p,i) message

to its parent in the tree. Any node p that is not a leaf nor the leader sends a SAFE(p,i)

message to its parent only after it h3-0 both rcccivcd the OK(p,i,) input and also recei .'ed

SAFE(q,i) messages from all its children. Thus SAFE(p,i) is not sent until every node in the

tree that is a descendant of p is safe. This pattern of communication, with a node passing a

message to its parent only after receiving it from all its children, is a common paradigm in

distributed graph algorithms, and is called coravergecaat. When the leader of cluster C has

received SAFE(q,i) messages from all its children q, and also is known to be safe itself (that

is, has received OK(p,i)), it issues the CLUSTEROK(C,i) operation.

Once CLUSTEROK(C i) has occurred, intercluster synchronization begins. The leader

sends each of its special children a CLUSTERSAFE(p i) message. In addition it sends

CLUSTERSAFE(p,i) messages over any preferred edges that originate at the leader. Each

node p in the tree, after receiving a CLtTSTEE.SAFE(q i) message from its parent q, sends

CLUSTERSAFE(p,i) to its special children, and also along any preferred edges. Thus the

CLUSTERSA.FE messages are broadcast over the subtree of special nodes (this is another

standard communication pattern), and are also sent to neighboring trees. The cluster C uses

a convergecast of READY(p i) messages (over the subtree containing only special children) to

detect the fact that CLUSTERSAFE(q,i) messages have been received from all neighboring

trees along preferred edges. When the leader of the Fpluster has received READY(q,i) from

each of its children, and also has received CLUSTERSAFE(q',i) along any preferred edges

that go directly from the leader to neighboring trees, it issues the CLUSTERGO(C,i+l)

operation, which indicates the completion of intercluster synchronization for cluster C.

Once the CLUSTERGO(C,i+l) operation has occurred, and also the whole cluster is

known to be safe (because the leader has received SAFE(q,i) messages from all its children,

and also it has received QK(p,i) itself) the leader p can issue GO(p,i+l) (informing node p

that the next round can begin) and it can also send PULSE(p,i+I) messages to each of its

children. The PULSE(p,i+l) messages are broadcast over the tree, and when they arrive at
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each node, that node is able to issue the GO(p,i+l) operation.

We claim that the collection of automata, consisting of all the automata LE(C) for all C,

ND(p) for all non-leader nodes p, and LI(p,q) for all p and q such that (p,q) is an edge of G,

is a distributed solution to the problem specified by the automaton S(G), the graph G, and

the requirement that the operations GO(p,i) and OK(p,i) be assigned to node p. Since it is

clear that the system is prcpcrly Iistributcd, all that rcmains ia to show that the automaton

DistSysS(G), the result of composing the automata and then hiding all operations except

GO(p,i) and OK(p,i), implements S(G). This will be done in Theorem 10.

4 The Verification

We now begin the process of verifying that the algorithm given implements the specifica-

tion. First we divide the code at each node into two pieces, containing the operations and

state relevant to inter- and intracluster synchronization, respectively. Then we give the

specification SL for an intracluster synchronizer, and remark that the actual code gives an

implementation of this using algorithm B. Similarly we note that the collection of automata

doing intercluster synchronization in one cluster implements the representative CLCS. In

turn, CLCS acts as the whole cluster should, as a piece contributing to intercluster synchro-

nization using algorithm a. Then we give the specification of the coordinator CS, which

represents intercluster synchronization, and note that algorithm a is a correct implemen-

tation of this. We prove formally that the combination of CS with the automata SL(C)

implements the specification S, that is, that synchronization can be achieved by combining

intra- and intercluster synchronization. Finally we combine all these results to see that the

distributed algorithm -y as described by the detailed code implements the global specification

S.

Although the subsidiary claims are given here in a particular bottom-up order, we note

that these results are independent, and could be carried out separately and in any order, or

even imported from other work (if available).
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4.1 The Division between Inter- and Intracluster Algorithmas

Following Awerbuch's infomal cosreetues axguznemt, we will regard the activity of the

system as consisting- of both inter- and intzacliaster synchronisation. The messages CLUS-

TERSAFE(p,i) and READY(p,i) are, used for interciuster synchronization, while the mes-

sages SAFE(p,i) and PULSE(p,i), an well as the operations OK(p,i) and GO(pji) are part

of intraciuster synchronization. '1%e operation CLUSTkEROK(C,i) serves to communicate

from the intracluster synchronizer-to the interciuster synchronizer, while CLUSTERGO(C,i)

communicates the other way. Thus, we -give two sets of automata; NDCS(p), LECS(C) and

LICS(p,q) to represent the interciuster synchronization, NDSL(p), LESL(C) and LISL(pjq)

to represent the intrecitister s/nebroaissition. The detailed code -can be found in Appendix

II, as it is extremely imilar to the code of the full algorithm. Essentially we divide the opera-

tions, state variables and transition relatiozaships of-ND(p) between. NDCS(p) and NDSL(p)

so that each gets the operation., state variables, and transitions relevanut to its own part of

the synchronization. Similarly, we divide LR(C) into LRCS(C) and LESL(C), and 1J(p,q)

into LICS(p,q) and: LISL(p,q).

It is clear that the composition of, tile automata NDCS(p) and NDSL(p) is equivalent to.

the automaton ND(p). The only diference, in f~.ct, is that the composition has two multisets

for outgoing mess~ages, while ND(p)- has only one multiset buffer. Similarly the composition

of LECS(C) and LESL(C) is equivalent to LE(C), and the composition of LICS(p,q) and

LISL(p,q) is equivalent to LI(p,,q). Therefore DistSyasS(G) is equivalent to DistsaS(G)', the

result of composing a11 the automata mentioned in this subsection, and then hiding all the

operations except GO(p,i) and OK(p,i). Our task will thus be to prove that DistSysS(G)'

implements S((G).

4.2 An Intracluster Synchronizer

The collection of automata that perform intracluster synchronization for a cluster C use

algorithm P. The combined activity of these automata is to synchronize the cluster, and

in addition to inform the interciuster synchronizer (via CLUSTEROK(C,i)) when the whole

cluster is safe, and to delay the GO(p,i) at any nods until all neighboring clusters are known

to be safe. (The intercluster synchronizer reports this by CLUSTERGO(C,i).) Thus the
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behavior of the cluster as a whole can be specified by the following automaton:

Modified Synchronizer for cilater C: SL(C)

{This is a slightly modified synchronizer specified, with extra operations that interact with

the interciuster synchronizer.)

Inputs:

OK(p,i) for p E C, i positive

CLUSTERGO(C,i) for i positive

Outputs:

GO(p,i) for p E C, i positive

CLUSTEROK(C,i) for i positive

State:

array OKrec(p,iI, initially all false

array GOuentlp,iJ, initially all false

array CLUSTEROKsent~i], initially all false

array CLUSTERGOrecHi, initially all false

transitions:

OK(p,i)

Postconditions

s.oKrec[p,i] = true

CLUSTERGO(C,i)

Poatcondit ions

a.CLUSTERGOrec~i] =true

GO(p,i)

Preconditions

i = 1 or (s'.OKrec[q,i-il = true for all q E Neighbors(p) r) C)

i= 1 or s'.GOsent(p,i-11J true
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9'.CLUSTERGOreo~il true

a'.GCsetjpIj fall.

Postconditiona

s.GOsen(I tuae

CLUSTEROK(C i)

Preconditions

u'.OKrecpIJ - tine for &A p E C

s'.CLUSTZ~iOK&*MSN fobs,

Postconditioa

*.CLUSTU3OKstIJ tw

In order to express forwo*l the fact that the .algotb"ui i's cormet, we lot Sy*SL(C)

denote the rembl of sowpg 4be *Atioiaka LESL4C), ND$L4p) for all p Ec 0 except

leader(C), ad LL(pA) kw &Hp &" so that (p,q)isan *I f G and bothk P &19are

nodes of C, and them hidixg WM the, opatio.. that are "o opwntioas of SL(C). Tbea we

have the following lemma, whoss proof is found in section 5.1.

Lmma 3 SpdA(C) ~impextest SL(C).

4.3 A Cluster Representative for luterciuster 8yaclaresbatiou

In giving hi. inforal accouant of this algorithm, Awarbuch refers to the iatwclu..r sys-

chronizatioa being perfovised toy using algorithm a between the clusters. Thus, we give, for

each cluster C, an automaton that speciie the activity of the whole cluster ao a parIeist

in interchaster syuichrosisatioa, using algorithm a. Thus the cluster *ends mema*s to its

neighbors once it has hear (from CLUSTEROK(C,i)) that the cluster is safe, it receives

messages from its neighbor. indicating that they ane safe, and perform. CLUSTE1tGO(C,i)

once all the neighboring clusters are known to be safe.

Cluster represerstie: CLCS(C)

Inputs:
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CLUSTEROK(C i) for i a number

rec(D,C)CLUSTERSAFE(D,i) for D E Neighbors(C), i positive

Output$:

CLUSTERGO(C,i) for i positive

send (C,D) CLUSTERSAFE(C,i) for D E Neighbors(C), i positive

state:

array CLUSTERGOsentI i], initially all false

array CLUSTERSAFErec[D,iJ, initially all false

multiset mess, initially empty

transitions:

CLUSTEROKIC,i)

Postconditions

s.mess = s'.mess U {(C,D)CLUSTERSAFE(C,i): D E Neighbors(C)}

rec(D,C)CLUSTERSAFE(D,i)

Postconditions

a.CLUSTERSAFErecLD,iI = true

CLUSTERGO(C,i)

Preconditions

i= I or (s'.CLUSTERSAFErec[D,i-1] = true for all D E Neighbors(C))

i = I or o'.CLUSTERGOsentlil = true

9'.CLUSTERGOsent[i] false

Postconditions

o.CLUSTERGOsent[i] true

send(C,D)CLUSTERSAFE(C,i)

Preconditions
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(C,D)CLUSTERSAFE(C,i) E a'.mefa

Postconditions

s.mes = a'.mM - {(C.D)CLUsTERSAFE(C,i))

We denote by SysCLCO(C) the oyutem formed by composing all the automata LECS(C),

NDCS(p) for p E C - leader(C), and LICS(pq) for p and q in C such that (p,q) is an edge

of G, then renaming send(pq)CLUSTMRSAFE(p,i) as send(CD)CLUSTEMIAFE(Ci) aad

rec(q,p)CLUSTERSAFE(qj) as i(DOC)CLUSTIMAPE(Di) whim (piq) is the pherred

edge between C end D, and -finall hiding a11l peratims that are act operatins of CLCS(C).

Then we have the following claim, that the detailed algorithm in each clusber iqhml ents

the required behavier. te proof i found in metion 1.2.

Lemma A S1,CLC5(C) impemeum CLCS(C).

4.4 An Int cluster SSch z ew

If we consider all the ms t CLOS(C) for eac clustr C, together with link automata

LICS(C,D) (ea& of tiese isjust UCS(pA) fior (pq) the pr~wrmd edge betweest C 4md D

with operationn reamsm , with p replacd by C sad q eplamd by D), tibm thv togeter

perform algorit a to .mysid~em betws the dusters. Tb. Wetrodmcem a automaton

that is just a spcification sychroc i r fo the quient grap famd by idetirying ai

the nodes in a dustow togedbr, xcept that esh sae ad aperaio sense is prefixed by

'cluster'.

Isterdfster SyseArewrzew: CS

Inputs:

CLUSTEROK(Ci) for C a d.ster, i poitive

Outputs:

CLUSTERGO(CA) for C a custer, i positive

State:

array CLUSTEROKrec[C ], initially all false
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array CLUSTERGOsent[C,i], initially all false

transitions:

CLUSTEROK(C,i)

Postconditions

s.CLUSTEROKrecC,i] = true

CLUSTERGO(C,i)

Preconditions

i = I or (s'.CLUSTEROKrec[D,i-1] = true for all D E Neighbors(C))

i 1 or (s'.CLUSTERGOsent[C,i-1] =true)

s'.CLUSTERGOsent[C,i] = false

Postconditions

s.CLUSTERGOsent[C,i] - true

We denote by SysCS the automaton formed by composing the automata CLCS(C) for

all clusters C, and LICS(C,D) for all pairs of clusters C and D that are neighbors, and then

hiding all operations that are not operations of CS. The fact that algorithm a is correct is

expressed simply by the following lemma, whose proof is given in section 5.3.

Lenm 5 SyaCS implements CS.

4.5 High Level Structure

Consider an automaton SysS(G), which is formed by composing the intracluster synchro-

nizers SL(C) for all clusters C, together with the intercluster synchronizer CS, and then

hiding all the operations except GO(p,i) and OK(p,i). The fact that performing inter- and

intracluster synchronization is a way to synchronize the whole graph, is expressed in the

following simple statement: SysS(G) implements S(G). In order to prove this statement, we

first give several results that relate the schedules of the automata involved to the states in

which the automata are left. First we discuss the specification automaton S(G).
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Lemma 6 Let a be a schedule of S(G), and let 8 be the state of S(G) after a. Then

1. a. Krecfp,i=tre if and only if a contain. OK(p,i).

S. a.GOsent/p,i/=true if and only if a contains GO(p,i).

Proof: We give the proof of (1), m the proof of (2) is almost the same. We use induction

on the length of a. If a is empty, tm it does not contain OK(p,i), and a is the initial stale,

for which s.OKrec[p ]=false. Thus suppose a = a'r, and let a' be the state of S(G) after

o'. If r is OK(p,i), then a contains OK(p,i), and by the postcondition of the operation

OK(p,i), s.OKrec[p,i] = true. Otherwise w is an operation whose postconditions do not

mention OKrec[p,i], and so we have s.OKrec[p,i] = true if and only if s'.OKrec[p,i] = true,

which by the induction hypothesis occurs if and only if a' contains OK(p,i). But (since w is

not OK(p,i)) we also have in this situation that a' contains OK(p,i) if and only if a contains

OK(p,i). This completm the proof of (1). Q.E.D.

We next give the lemmas about the state of the components of SysS(G). The proofs are

almost identical to that for Lemma 6, and so are left to the reader.

Lemma 7 Let a be a schedule of CS, and let s be the state of CS after 0. Then

1. s.CLUSTEROKreC,i/=true if sad only if a coataia CLUSTEROK(Ci).

R. s.CLUSTERGOsent[C ,i=true if and only if a contains CLUSTERGO(Ci).

Lemma 8 Let a be a schedule of SL(C), and let s be the state of SL(C) after a. Thef

1. s.OKrec[p,i/=true if and only if a contains OK(p,V.

2. a. GOsent/p,ij=true if and only if a contains GO(p,i).

S. a.CLUSTEROKset/iJ=trte if snd only if a contaias CLUSTEROK(Ci).

4. s.CLUSTERGOrec[i=true if and only if a contains CLUSTERGO(C,I).

Now we can prove the claim above, which says that intracluster synchronization and inter-

cluster synchronization combine to provide synchronization for the whole graph G.

Lemma 9 SV.S(G) implements S(G).
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Proof: Since every input and output operation of S(G) is an input or output of some

component SL(C) from which the system SysS(G) is formed, we only need to prove that

whenever a is a schedule of SysS(G), and P denotes the subsequence of a consisting of the

operations of S(G), then 6 is a schedule of S(G). This is proved by induction on the length

of a. If a is empty, then so is f, so that # is a schedule of S(G). So let us assume that a

- a'*. Letting 6' denote the subsequence of a' consisting of operations of S(G), we have by

the induction hypothesis thatf' is a schedule of S(G). If w is not an operation of S(G), then

= W, and we are done. Otherwise 8 = #fir. If x is OK(p,i), then jr is an input to S(G),

and so is enabled after any schedule of S(G), by the Input Condition, and therefore P is a

schedule of S(G).

Thus we suppose that r is GO(p,i). Let a denote the state of SL(C) after 0?, where C is

the cluster containing p. Let t denote the state of S(G) after ft. We have that x is enabled

(as an operation of SL(C)) in t, and we will deduce that it is enabled (as an operation of

S(G)) in a. By the preconditions for jr, t.GOsent[p,i] = false, and thus by Lemma 8 a?

does not contain GO(p,i). Therefore P' does not contain GO(p,i), and so by Lemma 6,

s.GOsent[p,i] = false. Also by the preconditions, either i = I or t.GOsent[p,i] = true. If

i : 1, by Lemma 8 a' contains GO(p,i-l), and thus P' contains GO(p,i-1). Therefore, by

Lemma 6, either i = 1 or s.GOsent[p,i-1] = true.

Suppose that i 1 1. Then the preconditions of ir as an operation of SL(C) imply that

t.CLUSTERGOrec[i] = true and that t.OKrec[q,i-1] = true for all q E Neighbors(p) n C. By

Lemma 8, a' contains CLUSTERGO(C,i) and OK(q,i) for all q E Neighbors(p) n C. Now, 0

by examining the preconditions for the operation CLUSTERGO(C,i) of the intercluster syn-

chronizer CS, and Lemma 7, we see that the prefix of a' preceding the CLUSTERGO(C,i)I

operation must contain CLUSTEROK(D,i-1) for all clusters D that are neighbors of C.

Therefore, by the preconditions of the operation CLUSTEROK(D,i-1) of SL(D) and Lemma

8, we deduce that the prefix of a preceding each CLUSTEROK(D,i-1) contains the opera-

tions OK(q,i-1) for all nodes q in cluster D. Thus a' (and hence f) contains OK(q,i-1) for all

q E Neighbors(p), as any such q is either in Neighbors(p) n C, or else is a member of a cluster

D that is in Neighbors(C). By Lemma 6, s.OKrec[q,i-1] = true for any q E Neighbors(p).

33



Thus we have shown that s.GOsent[p,i) false, that i = 1 or s.GOsent[p,i-1] = true, and

that i=1 or (s.OKrciq 4-1 = true for -all q e Neighbozs(p)). That i., we have shown that r

is enabled in state a, completing the proof. Q.E.D.

4.6 The Mals Theorem

We can now combine the results given above to verify the co rreetnesff of the detailed al;o.-

rithm for network synichroniation.

Theorem 10 Didt~yeS(G) iuapieaemta S(G).

Proof: We first cosider DiutSysCS, the automaton that results from composing all the

automata NDCS(p), LEdCS(C) end LICS(pq), and then hiding all operations except CLUS-

TERGO(Cji) and CLUSTEROK(Ci). By the associativity of composition (and the fact

that renaming and hiding behave well in composition), this is equivalent to composing all

the automata SysCLCS(C) and LICS(CD), and then hiding the remaining operations except

CLUSTERGO(C,i) and CLUSTEROK(Cji). Since by Lemma 4, SysCLCS(C) implements

CLCS(C) for each C, we have that DistSysCS implements SysCS by Lemma 2. Since by

Lemma 5, SysCS implement. CS, we deduce that DistSysCS implements CS.

Now DistSysS(G) is equivalent to DistSysS(G)', the result of composing all the automata

NDCS(p), NDSL(p), LECS(C), LESL(C), LICS(p,q) and LISL(p,q), and then hiding all

operations except GO(p,i) and OK(pi). But DistSysS(G)' is, by the asociativity of com-

position, equivalent to the result of composing DistSysCS with all the automata Sy8SL(C),

and then hiding operations. Since by Lemma 3 SysSL(C) implements SL(C), and, as we saw

above, DistSysCS implements CS, we can deduce from Lemma 2 that DistSysS(G)' imple-

ments SysS(G), the result of composing CS with all the automata SL(C) and then hiding

all operations except GO(p,i) and OK(p,i). By Lemma 9, SysS(G) implements S(G), and

teeoeDistSysS(G)' implements S(G). Thus DistSysS(G) implements S(G). Q.E.D.

ILIeor

5 Subsidiary Correctness Proofs

Wewill now give the proofs of the claims made and used in the previous section about the

correctness of the simpler algorithms such as synchronizers a and 6. First, we prove the
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fundamental lemmas about the behavior of a link automaton, as these are used repeatedly

in the following proofs.

Lenma 11 Let a be a schedule of LIM4 (p,q), and let s be the state of LIMt (p,q) after a.

Then for M E A, the multiplicity of M as an element of s.contents is z-y, where z is

the number of occurrences in a of send(p,q)M and I is the number of occurrences in a of

rec(p, q)M.

Proof: By induction on the length of a. The base case, when a is empty, is trivial since

then a is the initial state, so s.contents is empty and the multiplicity of M is zero. On the

other hand x and y are also both zero. Thus we suppose a = a'7r, and let s' be the state of

LI.M (p,q) after a'. If r is send(p,q)M' or rec(p,q)M' for M' # M, then by the postconditions

above the multiplicity of M is the same in s.contents as in s'.contents. Also the number of

occurrences of send(p,q)M and rec(p,q)M are the same in a as in a'. Thus the lemma follows

from the inductive hypothesis that the multiplicity of M in s'.contents equals the difference

between the number of occurrences of send(p,q)M and rec(p,q)M in a'.

If x is send(p,q)M, the multiplicity of M in s.contents is one more than its multiplicity

in s'.contents. On the other hand a contains one more occurrence of send(p,q)M than a',

and a and a' contain the same number of occurrences of rec(p,q)M. Therefore the lemma

follows from the induction hypothesis. If ir is rec(p,q)M the multiplicity of M in s.contents

is one less than its multiplicity in s'.contents but a contains the same number of occurrences

of send(p,q)M than a', and a contains one more occurrence of rec(p,q)M than a'. Thus the

lemma follows from the induction hypothesis. An obvious consequence of this lemma is the

following:

Lemma 12 Let a be a schedule of LIM (p,q) and let M E M. Then a contains at least as

many occurrences of send(p,q)M as of rec(p,q)M.

5.1 Correctness of Intracluster Synchronization

We prove Lemma 3, which says that algorithm # is correct.

We first study the components out of which SysSL(C) is formed.

Lemmna 13 Let a be a schedule of NDSL(p) and let s be the state of NDSL(p) after a. Then
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1. s.OKrecjp;,i/=trueif and only if a contains OK(p,i).

B. s.SAF~recjqiJtfiue if and only if a contains rec(qp)SAFE(q,i).

S. s.GOsent/p,i/=true if and only if a contains GO(p,i).

4. s.pulseji/=true if and only if. a contains ree(parent(p),p)PULSE(parcnt(p),i).

5. The multiplicity of (yjq)PULSR(pji) a. an element of . mess equals z-y whe",: is. the

number of occurrefemof rec(perentt(p),p)PULSE(parent(p),i) in az and~y is th.& number

of occurrences of send(p,q)PULSE(pi) in a.

6. The multiplicity of (pparent(p))SAFE(pi) as an element ofs. mess equals z- p where z

is the number of occurrence& in at- P3 of any of operation. OK(p, i) or rec(qp)SAFE(qi)

for q E children (p) (where 8 is the longest prefix of a not containing at' least one oc-

currence of each of the operations OK(p,i) and rec(qp)SAFE(qi) for q, e children(p)),

and y is the number of occurrences of send(pparent(p))SAFE(p,i) in a.

Immediate consequencew of the previous lemnma are given next.

Lemma 14 Let q C= chifien(p). If a is a schedule of NDSL(p) then a contain.t at least a.

many occurrence& of rec(pavent(p),p)PULSE(pawrsnt(p),i) as of 8@nd(p,q)PULSS(*,i).

Lemma 15 If ae is a schedule of NDSL(p) that contains send(p,parent(p))SAFE(p,i) thent

a contains rec(qp)SAFE(qi) for all q C- children (p), and a also contains OK(pi).

Lemma 16 Let a be a schedule of IIESL (C) and let s be the state of LESL(C) after a. Then

1. s. OKrecfq, i/=true if and only if.a contains OK(q, i).

1. s. GOsentj'qitrue if and only if a contains GO(qi).

S. s.SAFErecjqji/=true if and only if ar contains rec(qp)SAFE(p,i), where p=leadcr(C).

4. s. CLUSTERCOrecfqi1=true if and only if a contains CL US TERGO(Ci).

5. s.clustersafe/i/=true if and only if a contains OK(p,i) and rec(qp)SAFE(qi) f,, p=

leader(C) and all q E children(p).

6. s.pulse/i/=true if and only if a contains CL USTERGO(C,i) and either i=1 or s.cluster.

safeli-l/=true.
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7. a.CLUSTEROKeent/i/=true if and only if a contains CLUSTEROK(Ci).

8. For p = leader(C), the multiplicity of (p,q)PULSE(pi) as an element of emcee equals

z-y where z is the number of occurrences in ct-fl of any of the operations CL US-

TERGO(C,i), OK(p,i-1) or rec(qp)SAFE(qi-1) (where #i is the longest prefix of a

not containing CLUSTERGO(Ci) and (if i $ 1) at least one occurrence of each of

OK(p,i-1) and rec(q,p)SAFE(q,i.1) for q E children(p)), and y is the number of occur-

rences of send(p,q)PULSE(p,i) in a.

We next give an immediate consequence of part (7) of the Lemma above.

Lemma 17 Let p = leader(C), and q E children(p). If a is a schedule of ±'ESL(C) that

contains send(p,q)PULSE(p,i) then a con tain* CL US TERGO(Cis) and (ifs $7 1) OK(p,i.1)

and rec(qp)SAFE(qi-1) for all q E children(p).

The next result is an immediate consequences of the preconditions for OLUSTEROK(C,i)

as an operation of LESL(C), and (5) of Lemmna 18.

Lemma 18 Let p = leader(C). If a is a schedule of LESL(C) that contains CL US TEROK(Cis),

then ci contains OK(pi) and rec(qp)SAFE(qi) for all q E children(p).

We next prove the fundamental invariants of the system SysSL(O) that capture the

principles of the broadcast and convergecast paradigms of message flow. We recall that

SysSL(C) is formed by composing NDSL(p) for p E C - leader(C), LESL(C), and LISL(p,q)

for p and q in C, and then hiding certain operations, so its schedules are just schedules of

the composition.

Lemma 19 Let o: be a schedule of the automaton that results form composing NDSL(p) for p

E C - leader(C), LESL(C), and LISL(pq) for p and q in C. If ag contains send(p,parent(p)).

SAFE(p,i) for some p such that p E C, p $ leader(C), then at contains OK(q',i) for all q'

such that q' is a descendant of p in the tree of C.

Proof: We use induction on the height of p in the tree of C. The basis case, when p has

height 1, is when p is a leaf of the tree. In this case we need only check that of contains

OK(p,i), as p has no descendants except itself. This case is immediate from Lemma 15. So
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suppose that the Lemma has been proved for all non-leader nodes of height at most k, and

that p has height k+1, for k > 1. By Lemma 15, a contains rec(q,p)SAFE(q,i) for all q E

children(p), and also OK(p,i). By Lemma 12, a must contain send(p',p)SAFE(p',i) for all p'

E children(p), but such p' have height at most k, and none is leader(C). Thus the induction

hypothesis implies that a contains OK(q',i) for all q' such that q' is a descendant of p' where

p' is a child of p. However any q' that is a descendant of p is either p itself or a descendant

of a child of p. Thus a contains OK(q',i) for all q' that are descendants of p in the tree.

Q.E.D.

Lemma 20 Let a be a schedule of the automaton that results form composing NDSL(p) for

p E C - leader(C), LESL(C), and LISL(p, q) for p and q in C. Let a be the state of LESL (C)

after at. If 8. clustersqfefi/=true then a contains OK(q',i) for all q' E C.

Proof: By Lemma 16 a contains an OK(p,i) for p=leader(C) and a rec(q,p)SAFE(q,i) for

all q E children(p). By Lemma 12 a contains a aend(q,p)SAFE(q,i) for all q E children(p)

that then by Lemma 19 implies that ot contains QK(q',i) for all q' descendants of all q E

children(p). Thus we have shown that a contains OK(q',i) for all q' E C.- Q.E.D.

Lemmna 21 Let a be a schedule of the automaton that results form composing NDSL(p) for

p E C - leader(C), LESL(C), and LISL(p,q) for p and q in C. Suppose that s.pudae/i/=true,

where a is the state of the NDSL(p) (or LESL(C) if p=leader(C)) after a. Then a contains

CL US TERGO(C,i) and also, either i=1 or ar contains OK(qi-i) for all q E C.

Proof: We use induction on the depth of p in the tree of C. The basis case, when p has

depth 1, is when p=leader(C). From Lemma 16, we see that a contains CLUSTERGO(C,i)

and that either i=1 or else s.clustersafe[i-1] =true. By Lemma 20, either i=1 or a contains

OK(q,i-1) for all q E C. Thus we suppose that the lemma has been proved for all nodes

of depth at most kt, and that p has depth k+i, for k > 1. Then p is not the leader of

C. By Lemma 13 s.pulse[i]=true implies a contains rec (parent (p),p) PU LS E(parent (p),i),

which by Lemma 12 implies that ac contains a send (parent (p),p) PULS E(parent (p),i). Now

the preconditions of send (parent (p) ,p) P ULSE(parent (p) ,i) imply s'. pulsef ii =true, where S'

is the state of NDSL(parerit(p)) (or LESL(C), if parent (p) =leader (C)), immediately before

the operation send (parent (p),p) PULSE(parent (p),i).- But parent(p) has depth k, and so the
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induction hypothesis implies that a prefix of a, and thus a itself, contains CLUSTERGO(C,i)

and also that either i=1 or a contains OK(q,i-1) for all q E C. Q.E.D.

Now we are ready to prove the claim, given as Lemma 3, that SysSL(C) acts as a modified

synchronizer for the whole cluster C, by following algorithm #.

Lemma 22 SysSL(C) implement* SL(C).

Proof: Since every input and output operation of SL(C) is an input or output of SysSL(C),

we only need to prove that whenever a is a schedule of the composition SysSL(C), and 0

denotes the subsequence of o: consisting of operations of SL(C), then P is a schedule of SL(C).

This is proved by induction on the length of a. If a is empty, then so is 8, so that jO is a

schedule of SL(C). Therefore let us assume that a = a'". Letting f' denote the subsequence

of g' consisting of operations of SL, we have by the induction hypothesis that T is a schedule

of SL. If 7r is not an operation of SL, then 6 = P, and we are done. Otherwise P = P'r. If r

is CLUSTERGO(C,i) or OK(p,i) where then xr is an input to SL(C), and so is enabled after

any schedule of SL(C), by the Input Condition, and therefore P is a schedule of SL(C).

If r is CLUSTEROK(C,i), then by preconditions for x as operation of LESL(C) and

Lemma 16, a' must not contain CLUSTEROK(C,i) and also s.clustersafe(i)=true, where

s is the state of LESL(C) after a'. By Lemma 20, a' contains OK(p,i) for all p E C .

Therefore, transferring these facts to P', we see that P5' contains OK(p,i) for all p E C, and

that 9' does not contain CLUSTEROK(C,i). Let t denote the state of SL(C) after '. By

Lemma 8, t.OKsent[p,i]=true for all p e C, and t.CLUSTEROKsent[i]=false. Examining

the preconditions for r as an operation of SL(C), we see that w is enabled after ', and thus

/8 is a schedule of SL(C).

If r is GO(p,i), then let s denote the state after a' of NDSL(p) (or LESL(C) if p=leader(C)).

By the preconditions for if as an operation of NDSL(p) or LESL(C), and Lemma 16 or Lemma

13, a' does not contain GO(p,i) and also, if i01, a' contains GO(p,i-l). Also, the precon-

dition s.pulse[i]=true for x as an operation of NDSL(p) or LESL(C), implies by Lemma 21

that a' contains CLUSTERGO(C,i) and also that, if i 0 1, a' contains OK(q,i-1) for all

q E C. Thus 6' does not contain GO(p,i) and contains CLUSTERGO(C,i), and if i # 1,

also contains GO(pi-1) and OK(q,i-1) for all q E C. Now, by the preconditions for s as an

operation of SL(C), and by Lemma 8, we have that x is enabled after 0, so P is a schedule
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of SL(C) as required. Q.E.D.

5.2 Correctness of the Cluster Representative

Now we prove Lemma 4, which says that the broadcast and convergecast, used by the.

automata NDCS(p) and LECS(C) to communicate within a cluster C, work as the cluster

representative CLCS(C) is supposed to. Once again, we first relate the schedules of the

automata involved to the states in which the automata are left.

Lemma 23 Let a be schedule of CLCS(C), and lets be the state of CLCS(C) after a.

Then

1. s.CLUSTERGO#ntfji=tre if ang only if a contain. CLUSTERGO(Ci).

2.. . CLUSTERSAFErec[Di=true if and only if cm contains rec(D, C)CLUSTERSAFE(D,i).

S. the multiplicity of (CD)CLUSTERSAFE(Ci) ae an element of s.mess equals z-y,

where z is the number of oecurrences of CLUSTEROK(Ci) in o and y is the number

of occurrence# of smd(CD)CLUSTERSAFE(Ci) in a.

For later use, we observe the folowing immediate consequence of (3) above.

Lemnma 24 Let a be a schedule of CLCS(C). Then a contains at least as many occurrence*

of CLUSTEROK(Ci) as of send(CD)CLUSTERSAFE(Ci).

We now study the components out of which Sy*CLCS(C) is formed.

Lerrmna 25 Let oi be & schedule of NDCS(p) and let # be the state of NDCS(p) after a.

Then

1. a.CLUSTERSAFErcJq,i/=tr~e if and only if a contains rec(qp)CLUSTERSAFE(q,i).

2. a.READYree[i/=trte if and only if a contains READY(li).

S. If q E speeialchildree(pJ u Preferred(p), the multiplicity of (p,q)CLUSTERSAFE(p,i)

as an element of a.mes equals z- y where z is the number of occurrences of rec(parent(p),p).

CLUSTERSAFE(parent(p),i) in a and y is the number of occurrences of send(p,q)-

CLUSTERSAFE(p,i) in a.
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4. The multiplicity of (p,parent(p))READY(p,:) as an element of *.me" equals z-p where

z is the number of occurrences in a-,6 of any of the operations rec(qp)READY(qi) for

q E specialchildren(p) or rec(q',p)CLUSTERSAFE(q',i) for q' E Preferred (p), (where

P is the lon gest prefix of a not containing at least one occurrence of all the operations

rec (q,p)REA DY(q, i) for q E specialchildren (p) and rec (q ',p)CLUS TERSA FE(q',i) for

q'E Preferred (p)), and y is the number of occurrences of send(p,parent(p))READY(p,i)

in at.

Immediate consequences of (3) and (4) of the previous lemma are given next.

Lemnma 26 Let q E children (p) U Preferred(p). If a is a schedule of NDCS(p) then o:

contains at least as many occurrences of rec (parent (p),p) CLUS TERSA FE(parent (p),i) as of

send(p, q)CLUSTERSAFE(p,i).

Lemmxa 27 If a is a schedule of NDCS(p) that contains send(p,parent(p))READY(p,i)

then ak contains rec(q,p)READY(qi) for all q E specialchildren(p), and a also contains

rec(q ',p)CLUSTERSAFE(q',i) for all q' E Preferred(p).

We similarly study LECS(C).

Lemnma 28 Let ai be a schedule of LECS(C) and let s be the state of LECS(C) after a.

Then

1. s.READYrec/qji/=true if and only if a: contains rec(q,p)READY(qji), where pleader(C).

2. s. CL USTERSA FErec/q, ilzt rue if and only if at contains rec(qp)CLUSTERSA FE(q, ),

where p~leader(C).

S. s.CLUSTERGOsent/i/~true if and only if a contains CL US TERGO(Ci).

4. For p = leader(C) and q E specialchildren(p) U Preferred (p), the multiplicity of (p,q)-

CLUSTERSAFE(p,i) as an element of s.mess equals x-y where x is the number of

occurrences of CLUSTEROK(Ci) in ai and y is the number of occurrences of send(p,q).

CLUSTERSAFE(p,i) in ai.

We next give an immediate consequence of (4) above.
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Lemma 29 Let p = leader(C), and q E children(p) u Preferred(p). If a is a schedule

of LECS(C) then a contains at least as many occurrences of CLUSTEROK(Ci) as of

send(p,q)CLUSTERSAFE(p,i).

The next result is an immediate consequence of the preconditions for CLUSTERGO(C,i) as

an operation of LECS(C), and ,2) of Lemma 28.

Lemma 30 Let p = leader(C). If a is a schedule of LECS(C) that contains CLUSTERGO(Ci)

for a value i > 1, then a contains rec(qp)READY(qi-1) for all q E specialchildren(p), and

a also contains rec(q',p)CLUSTERSAFE(q',i-1) for all q' E Preferred(p).

We next prove the fundamental invariants of the system SysCLCS(C) that capture the

principles of the broadcast and convergecast paradigms of message flow. We recall that

SysCLCS(C) is formed by composing NDCS(p) for p E C - leader(C), LECS(C), and

LICS(p,q) for p and q in C, and then renaming and hiding certain operations.

Lemma 31 Let a be a schedule of Me automaton that results form composing NDCS(p) for

p E C - leader(C), LEGS(C), and LICS(p,q) for p and q in C. Let p and q be such that p E

C and q E specialchildren(p) U Preferred(p). Then a contains at least as many occurrences

of CLUSTEROK(Ci) as of send(p, q)CLUSTERSAFE(p,i).

Proof: We use induction on the depth of p in the tree of C. The basis case, when p

has depth 1, is when p=leader(C). This case is immediate from Lemma 29. So suppose

that the lemma has been proved for all nodes of depth at most k, and that p has depth

k+1, for k > 1. Then p is not the leader of C. Let x denote the number of occurrences

of send(p,q)CLUSTERSAFE(p,i) in a. By Lemma 26, a contains at least x occurrences

of rec(parent(p),p)CLUSTERSAFE(parent(p),i), and therefore by Lemma 12, it contains at

least x occurrences of send(parent(p),p)CLUSTERSAFE(parent(p).i). However parent(p)

has depth k, and so the induction hypothesis implies that a contains at least x occurrences

of CLUSTEROK(C,i), as required. Q.E.D.

Lemma 32 Let a be a schedule of the automaton that results form composing NDCS(p) for p

E C - leader(C), LECS(C), and LICS(p,q) for p and q in C. If a contains send(p,parent(p)).

READY(p,i) for some p such that p E C, p 0 leader(C), then a contains rec(q,q')CLUSTER-
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SAFE(q,i) for all q and q' such that q' is a descendant of p in the tree of C, and q E

Preferred(q').

Proof: We use induction on the height of p in the tree of C. The basis case, when p has

height 1, is when p is a leaf of the tree. In this case we need only check that a contains

rec(q,p)CLUSTERSAFE(q,i) for q E Preferred(p), as p has no descendants except itself. This

case is immediate from Lemma 27. So suppose that the Lemma has been proved for all non-

leader nodes of height at most k, and that p has height k+1, for k > 1. By Lemma 27, a con-

tains rec(q,p)CLUSTERSAFE(q,i) for all q E Preferred(p), and also rec(p',p)READY(p',i)

for all p' E specialchildren(p). By Lemma 12, a must contain send(p',p)READY(p',i) for all

p' E children(p), but such p' have height at most k, and none is leader(C). Thus the induc-

tion hypothesis implies that a contains rec(q,q')CLUSTERSAFE(q,i) for all q and q' such

that q' is a descendant of p' where p' is a special child of p, and such that q E Preferred(q').

However for any q' that is a descendant of p and for which q E Preferred(q'), q' is either p

itself or a descendant of a special child of p. Thus we have completed the proof. Q.E.D.

Now we are ready to prove the claim, Lemma 4 that SysCLCS(C) acts as a representative

of the whole cluster C, within algorithm a.

Lemma 33 SysCLCS(C) implements CLCS(C).

Proof: Since every input and output operation of CLCS(C) is an input or output of

SysCLCS(C), we only need to prove that whenever a is a schedule of the composition

SysCLCS(C), and /3 denotes the subsequence of a consisting of operations of CLCS(C),

then 3 is a schedule of CLCS(C). This is proved by induction on the length of a. If a is

empty, then so is /3, so that /3 is a schedule of CLCS(C). Therefore let us assume that c = 'lsr.

Letting #9' denote the subsequence of a' consisting of operations of CS, we have by the induc-

tion hypothesis that /3' is a schedule of CS. If 7r is not an operation of CS, then /3 = /3', and we

are done. Otherwise /3 = /3'r. If ir is CLUSTEROK(C,i) or rec(D,C)CLUSTERSAFE(D,i)

where then 7r is an input to CLCS(C), and so is enabled after any schedule of CLCS(C), by

the Input Condition, and therefore /3 is a schedule of CLCS(C).

If 7r is send(C,D)CLUSTERSAFE(C,i), then before renaming (as an operation of the

automaton that results form composing NDCS(p) for p E C - leader(C), LECS(C), and
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LICS(p,q) for p and q in C), 7r was send(p,q)CLUSTERSAFE(p,i) where p e C, q E Pre-

ferred(p), and q E D. Then by Lemma 31, ci (and hence a' and fl') contains at least x occur-

rences of CLUSTEROK(C,i), where x is the number of occurrences of send(C,D)CLUSTER-

SAFE(C,i) in a, since these were exactly the occurrences of send(p,q)CLUSTERSAFE(p,i)

before renaming. Thus /' contains x-1 occurrences of send(C,D)CLUSTERSAFE(C,i). By

Lemma 23, (C,D)CLUSTERSAFE(C,i) is an element of t.mess, where t is the state of

CLCS(C) after 83', and thus 7r is enabled in state t. Thus / is a schedule of CLCS(C).

If ?r is CLUSTERGO(C,i), then before renaming (as an operation of the automaton that

results form composing NDCS(p) for p E C - leader(C), LECS(C), and LICS(p,q) for p and q

in C), ir was also CLUSTERGO(C,i). By the preconditions for 7r as an operation of LECS(C)

and Lemma 28, a' must not contain CLUSTERGO(C,i). Also, if i1, C' (before renaming)

must contain CLUSTERGO(C,i-1) and rec(q,p)CLUSTERSAFE(q,i-1) for p - leader(C) and

all q E Preferred(p), and rec(p',p)READY(p',i-1) for p = leader(C) and all p' E children(p).

Then, by Lemma 12, a' (before renaming) contains send(p',p)READY(p',i-1) for all p' E chil-

dren(p), and hence (by Lemma 32) before renaming, a' contains rec(q,q')CLUSTERSAFE(q,i-

1) for all q' descended from a child of p, and q E Preferred(q'). Thus we have shown that,

before renaming, a? contains rec(q,q')CLUSTERSAFE(q,i-1) for all q' descended from p

(that is, all q' E C), and all q E Preferred(q'). Therefore (after renaming) a' contains

CLUSTERGO(C,i-1) and rcs.(D,C)CLUSTERSAFE(Di-1) for all D E Neighbors(C). We

can transfer all the above conclusions to /6, deducing that 83' does not contain CLUS-

TERGO(C,i), and if i 0 1, /' contains CLUSTERGO(C,i-1) and rec(D,C)CLUSTERSAFE(D,i-

1) for all D E Neighbors(C). By the preconditions for 7r as an operation of CLCS(C) and

Lemma 23, we have that 7r is enabled after 83', so # is a schedule of CLCS(C) as required.

Q.E.D.

5.3 Correctness of Intercluster Synchronization

We next prove the claim of Lemma 5, that algorithm a provides correct synchronization

between the clusters.

Lernnia 34 SysCS implements CS.
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Proof. Since every input and output operation of CS is an input or output of SysCS, we

only need to prove that whenever a is a schedule of SysCS, and / denotes the subsequence of

a consisting of the operations of CS, then 6 is a schedule of CS. This is proved by induction

on the length of a. If a is empty, then so is P, so that # is a schedule of CS. Therefore let

us assume that a = a'er. Letting/3' denote the subsequence of a' consisting of operations of

CS, we have by the induction hypothesis that fl' is a schedule of CS. If ir is not an operation

of CS, then / = 8', and we are done. Otherwise P = P'7r. If 7r is CLUSTEROK(C,i), then 7r

is an input to CS, and so is enabled after any schedule of CS, by the Input Condition, and

therefore #3 is a schedule of CS.

Thus we suppose that 7r is CLUSTERGO(C,i). Let s denote the state of CLCS(C) after

a'. Let t denote the state of CS after P'. We have that 7r is enabled (as an operation

of CLCS(C)) in t, and we will deduce that it is enabled (as an operation of CS) in s.

By the preconditions for ir, t.CLUSTERGOsent[i = false, and thus by Lemma 23 a' does

not contain CLUSTERGO(C,i). Therefore /#' does not contain CLUSTERGO(C,i), and

so by Lemma 7, s.CLUSTERGOsent[C,i] = false. Also by the preconditions, either i = 1

or t.CLUSTERGOsent[i] = true. If i : 1, by Lemma 23 a' contains CLUSTERGO(C,i-

1), and thus fl' contains CLUSTERGO(C,i-1). Therefore, by Lemma 7, either i = 1 or

s.CLUSTERGOsent[C,i-1] = true.

Suppose that i 0 1. Then the preconditions of ir as an operation of CLCS(C) imply

that t.CLUSTERSAFErec[D,i-1] = true for all D E Neighbors(C). Thus by Lemma 23 a'

contains rec(D,C)CLUSTERSAFE(D,i-1) for all D E Neighbors(C), and hence by Lemma 12

a contains send(D,C)CLUSTERSAFE(D,i-1). By Lemma 24 applied to CLCS(D), a' con-

tains CLUSTEROK(D,i-1). Therefore /' contains CLUSTEROK(D,i-1), and so by Lemma

7 s.CLUSTEROKrec[D,i-1] = true for all D E Neighbors(C).

Thus we have shown that s.CLUSTERGOsent[C,i] = false, that i = 1 or s.CLUSTERGO-

sent[C,i-11 = true, and that i=1 or (s.CLUSTEROKrec[D,i-1] = true for all D E Neigh-

bors(C)). That is, we have shown that ir is enabled in state s, completing the proof. Q.E.D.
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6 Message and Time Analysis

We will now show that operational reasoning in the I/O model can be used to prove results

about the message and time performance of the algorithm, as well as the safety property

of implementing a specification. In order to do this, however we will need to restrict the

environment of the system, that is, the ways in which the input operations OK(p,i) arrive.

We say that a schedule of the distributed synchronization system DistSysS(G) is well-formed

if any occurrence of OK(p,i) is preceded by GO(p,i) and is not preceded by OK(p,i). Thus a

well-formed schedule reflects the behavior of the system when the environment is issuing only

one OK message at each node for each round, and is not issuing that until the synchronizer

has allowed the round to start.

We now show that in a well-formed schedule every operation can occur at most once.

Lernna 35 Let ci be a well-formed schedule of DistSysS(G). Then a contains at most one

occurrence of each operation.

Proof: Since the DistSysS(G) is equivalent to DistSysS(G), we can and will regard a as

a schedule of DistSysS(G)'. We use induction on the length of a. rhe basis case, when a

is empty, is trivial. Thus we suppose i=a' r, and that a' contains at most one occurrence

of each operation. In order to show the same for a, we need only prove that a' does not

contain 7r.

If ir is OK(p,i) this is immediate from the definition of well-formed.

If 7r is rec(p,q)M for some message M, this follows from Lemma 12, since by the induction

hypothesis a' (and thus a) contains at most one occurrence of send(q,p)M.

If xf is GO(p,i) or CLUSTERGO(C,i) or CLUSTEROK(C,i), this is a consequence of the

preconditions for 7r as an operation of the appropriate component automaton. Each of these

operations has a precondition that checks that the operation has not already occurred, for

example s'.GOsent[i]--false is a precondition for GO(p,i), and by Lenima 13 this means that

0' does not contain GO(p,i).

If 7r is send(p,q)PULSE(p,i) and p is not the root of its tree, this follows from part

(5) of Lemma 13, since the multiplicity of a message in a nwlti-.t (annot be negative,

and by the induction hypothesis a' (and hei'e a) contains at most one occurrence of
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rec (parent(p),p) PULSE(parent (p),i). If 7r is send(p,q)PULSE(p,i) where p=leader(C), the

lemma follows similarly from part (8) of Lemma 16, since by the induction hypothesis each

operation CLUSTERGO(C,i), OK(p,i-1) and rec(q',p)SAFE(q',i-1) can occur at most once

in d and so all except one of these (namely the one that occurs last) occur in a prefix of a

not containing all of them.

If ir is send(p,q)SAFE(p,i) the lemma follows from part (6) of Lemma 13, since the

multiplicity of a message in a multiset is non-negative, and only the last one of the operations

OK(p,i) or rec(q',p)SAFE(q',i) for q' E children(p), will not occur in a prefix of a not

containing all of these operations.

If 7r is send(p,q)READY(p,i) the lemma follows from part (4) of Lemma 25 in the same

way.

If xF is send(p,q)CLUSTERSAFE(p,i) the lemma follows from part (4) of Lemma 28, or

part (3) of Lemma 25, depending on whether or not p is the leader of its tree.

Thus we have proved the lemma for each possibility for ir. Q.E.D.

6.1 Message Complexity

We now show how we can bound the number of messages sent in an execution of the al-

gorithm. We will speak of the messages PULSE(p,i), SAFE(p,i-I), CLUSTERSAFE(p,i-1)

and READY(p,i-1) as all belonging to round i, because they are sent in preparation for is-

suing a GO(p,i) operation. We note that if a is a schedule of DistSysS(G) containing an

operation send(p,q)M for a message M belonging to round i, and i 0 1, then a contains

at least one operation OK(p',i-1). If M is SAFE(p,i-1) this is proved in Lemma 19. If

M is CLUSTERSAFE(p,i-1) then Lemma 31 implies that a contains CLUSTEROK(C,i-1),

whose precondition s'.clustersafe[i-1]=true implies by Lemma 20 that a contains OK(p,i-1)

as desired. If M is READY(p,i-1) then Lemma 32 shows that ai contains some rec(q',q")-

CLUSTERSAFE(q',i-1) operation, for q' a descendant of p, and thus a send(q',q")CLUSTER-

SAFE(q',i-1) operation, and hence some OK(p',i-1) operation, by the above. Finally if Mf is

PULSE(pi) then a contains OK(q',i-1) for all q' in p's cluster, by Lemma 21. This result

implies for a well-formed schedule of DistSysS(G), that if it contains a message belonging to

round i, then it contains GO(p,i-1) for some p.
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Now we can prove that the number of messages used per round is bounded by four times

the number of edges that are preferred edges or tree edges. We say that round i is commenced

in the execution a if a contains some GO(p,i) operation.

Lemma 36 Suppose a is a well-formed schedule of DistSysS(G) for which i0 is the largest

round number commenced. Then the number of send(q,q')M operations in a is at most

4(i 0 +1) times the number of tree or preferred edges.

Proof: The observations above show that a contains no operation send(q,q')M where M

is a message belonging to a round greater than i0 +1. Since no the link automata on edges,

other than tree or preferred edges, have empty message sets, and each of the two automata

on a preferred or tree edge has at most 2 messages belonging to each round in its message

set, the result is immediate from Lemma 35. Q.E.D.

6.2 Time Complexity and Liveness

In order to discuss the time complexity of the algorithm, we introduce the idea of a 'timed

execution'. We call the combination of an execution s0,7r 1 ,s l , 7r 2 , s 2 , . . . of automaton A and

a nondecreasing sequence of nonnegative real numbers ('times') tl,t2 ,...,, where there are

the same number of t i as there are operations iri in the execution, a timed execution of A.

Intuitively, we understand this combination as indicating that iri occurred at time t-i. As a

convention we put t o = 0. For any nonnegative t, we say that s i is a state of the automaton

at time t if t i < t < ti+ 1 . Note that since the times need not be strictly increasing, there

may be several states at a given time. We refer to the subsequence of the execution up to,

but not including, the first operation 7ri for which t i > T, as the execution up to time T,

so that the state si_1 that ends this is the last state of the automaton at time T. Thus the

operations 7ri that occur in the execution up to time T are exactly those whose times t i am

less than or equal to T. In order to prove any bounds on the time the synchronizer algorithm

takes, we will need to assume that the component automata take steps promptly. Thus we

introduce the notion of a 1-admissible timed execution of an automaton 4. We say that a

timed execution of A is 1-admissible2 if whenever there is an output or internal operation

2 This is a special case of a more general definition due to Tuttle.
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ir, a state s and a time T, such that s = si is a state of the automaton at time T and 7r is

enabled in state s, then there is some index j > i such that the operation 7r = ,ri and t <

T+I. In particular, in a 1-admissible timed execution, any operation (other than an input)

enabled in a state at time T, occurs in the execution of the system up to time T+I.

Now, an output or internal operation is enabled for an automaton formed by composing

components and hiding operations, exactly when it is enabled for the unique component

automaton of which the operation is not an input operation. It follows that in applying the

definition of 1-admissible timed execution to the system DistSysS(G), we can consider the

states of the component automata separately. For example, when we consider the link au-

tomaton LI{ (p,q), we see that the definition implies that in a 1-admissible timed execution

of a distributed solution, any message sent is delivered within one unit of time. We also

remark that all the automata discussed in this paper have the property that once an output

or internal operation is enabled, it remains enabled until it occurs.

We first prove that the system DistSysS(G) begins by issuing GO(p,1) operations promptly.

Lemma 37 Let H be the greatest depth of a tree in the spanning forest for G. Then any

1-admissible timed execution of DistSysS(G) contains GO(p,1) for all p, in the execution up

to time 2H.

Proof: We prove that for any node p, the operations GO(p,1) and send(p,q)PULSE(p,1)

occur in the execution up to time 2k, where k is the depth of p in its cluster's tree. This

statement clearly implies the truth of the lemma, and we will prove it by induction on k.

The basis case, when k=1, is when p=leader(C) for some cluster C. Notice that for
S

each cluster C, the operation CLUSTERGO(C,1) of LE(C) is enabled in the initial state

of the system, and so is enabled in a state at time 0. Therefore the operation occurs

by time 1. Examining the postconditions of CLUSTERGO(C,1), and the preconditions of

GO(p,1) and send(p,q)PULSE(p,1) for q E children(p), we see that each operation GO(p,1)

and send(p,q)PULSE(p,1) is enabled in the last state of the system at time 1, unless it has

occurred already in the execution up to time 1. In either case, we deduce that each operation

GO(p,1) and send(p,q)PIJLSE(p,1) occurs in the execution up to time 2.

Now we suppose the statement proved for all nodes of depth k-i, and prove it for a node

p of depth k, for some value k > 1. Since k $ 1, p is not leader(C), so let p'=parent(p). Then
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p' has depth k-1, the induction hypothesis shows that the execution tip to time 2k-2 contains

send (p',p) PULSE(p',l). Therefore, considering the preconditions for rec(p',p)PULSE(p',l)

as an operation of LI(p',p), rec(p',p)PULSE(p',l) is enabled in the last state of the system

at time 2k-2 unless rec(p',p)PULSE(p',l) has occurred in the execution to time 2k-2. In

any case, rec(p',p)PULSE(p',1) must occur in the execution up to time 2k-1. Examining the

postconditions of rec(p',p)PULSE(p',l) as an operation of ND(p), we see that the precon-

ditions of each of the operations GO(p,1) and send(p,q)PULSE(p,1) for q E children(p) are

satisfied in the last state at time 2k-i, unless the operation in question has already occurred

in the execution up to time 2k-1. In any case, each operation must occur in the execution

up to time 2k. This completes the inductive step of the proof of the statement, and thus

completes the proof of the lemma. Q.E.D.

Now we prove that the algorithm has good time performance, as claimed in [Aw].

Lemma 38 Let H be the greatest depth of a tree in the spanning forest for G. Suppose i is

a positive integer. Then any 1-admissible well-formed timed execution of DistSySS(G) that

contains OK(p,i) for every node p in the execution up to time T, contains GO(p,i+1) for

every node p in the execution up to time T+8H.

Proof: We first prove the statement that for any node p, whose height in its cluster's tree

is k, the execution up to time T+2k-2 contains rec(p',p)SAFE(p',i) for all p' E children(p).

This is proved by induction on the height k. The basis case, when k=1, is when p is a

leaf. This case is trivial as there are no elements of children(p). Therefore we assume that

k > 1, and that the statement has been proved for all nodes of height less than k. Fix

any p' E children(p), so p' has height at most k-i, and so by the induction hypothesis,

the execution up to time T+2k-4 contains rec(p" ,p')SAFE(p" ,i) for every p" E children(p').

Examining the postconditions of the operations OK(p',i) and rc(Q" ,I')SAFE(p",i), we see

that the last of these to occur causes (p',p)SAFE(p',i) to be placed in the outgoing message

buffer of ND(p'), and so (since all have occurred in the cxecutioi to time T+2k-4) the

operation send(p',p)SAFE(p',i) is enabled in the last state at time '-I 2k-4, unless it has

already occurred in the execution to titne T f 2k-. In any case senid(p',p)SAFE(p',i) must

occur in the excution to time T+2k-3. Considering the link autormiat on L1(p',p), we see

that, rec(p',p)SAFE(p',i) is enabled in the last state at time "'7 2k-3, unless it has already
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occurred, and so rec(p',p)SAFE(p',i) must occur in the execution to time T+2k-2. Since p'

was an arbitrary child of p, this establishes the truth of the statement.

Next we prove the statement that for any special node p, whose depth in its cluster's

tree is k, the execution up to time T+2H+2k-2 contains send(p,q)CLUSTERSAFE(p,i) for

every q E specialchildren(p) U Preferred(p). This time we use induction on the depth k.

The basis case, when k=1, is when p=leader(C). Examining the preconditions of the CLUS-

TEROK(C,i) operation of the automaton LE(C), we deduce from the previous statement

(since p has height at most H in its tree) that CLUSTEROK(C,i) is enabled in the last state

at time T+21H-2, unless it has occurred earlier. In any case, CLUSTEROK(C,i) must oc-

cur in the execution to time T+2H-1. Examining the postconditions of C.'USTEROK(C,i),

we see that, for every q e speciaichildren(p) U Preferred(p), send(p,q)CLUSTERSAFE(p,i)

is enabled in the last state at time T+2H-I, unless it has occurred already. In any case,

send(p,q)CLUSTERSAFE(p,i) occurs in the execution up to time T+2H, proving the state-

ment for k=1. Assuming the result proved for nodes of depth less than k, we prove

the statement for a special node p of depth k > 1. Since parent(p) is special, and has

depth k-I, the induction hypothesis implies that the execution to time T+2H+2k-4 contains

send (parent (p),p) CLUSTERSAFE(parent(p),i). Thus the execution up to time T+2H+2k-

3 contains rec (parent(p),p) CLUSTERSAFE(parent (p),i). Examining the postconditions of

this operation of ND(p), we see that each operation send(p,q)CLUSTERSAFE(p,i) for q E

specialchildren(p) u Preferred(p) is enabled in the last state at time T+2H+2k-3, unless it

has already occurred. In any case each of these operations must occur in the execution to

time T+2H+2k-2, completing the proof of this statement.

Next we prove the statement that for every special node p, whose height in its cluster's

tree is k, the execution up to time T+4H+2k-3 contains rec(p',p)READY(p',i) for all p' E:

specialchildren(p). The basis case, when k=1, is trivial, as then p is a leaf of the tree and has

no children at all. Therefore, we assume that k > 1, and that the statement has been proved

for all special nodes of height less than k. Fix any p' E specialchildren(p), so p' has height

at most k-1. Examining Ihe postconditions of all the operations rec(q,p')READY(q,i) for q

E specialchildren(p'), and rec(q',p')CLUSTERSAFE(q',i) for q' E Preferred(p'), we see that

the last of these to occur causes (p',p)READY(p',i) to be placed in the outgoing message
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buffer of ND(p'). However each of rec(q,p')READY(q,i) occurs in the execution up to

time T+4H+2k-5, by the induction hypothesis, and each of rec(q',p')CLUSTERSAFE(q',i)

occurs in the execution up to time T+4H-1 since send(q',p')CLUSTERSAFE(q',i) occurs in

the execution up to time T14H-2 (by the previous statement). Since p is special, the set of.

events rec(q,p')READY(q,i) for q E specialchildren(p') and rec(q',p')CLUSTERSAFE(q',i)

for q' G Preferred(p'), is not empty, and so send(p',p)READY(p',i) is enabled in the state at

time T+4H+2k-5 unless it occurred already. In any case, send(p',p)READY(p',i) occurs in.

the execution up to time T+4H+2k-4, and so rec(p',p)READY(p',i) occurs in the execution

up to time T+4H+2k-3.

Finally we observe that we can prove by induction on the depth, that for any node P,

whose depth in its cluster's tree is k. and any q E children(p), the operations GO(p,i+l)

and send(p,q)PULSE(p,i+1) occur in the execution up to time T+6H+2k-3. This statement

clearly implies the truth of the lemma. The basis case, when k=1, is when p=leader(C) for

some cluster C. Since the schedule we are considering is well formed, it contains GO(p',i)

for every p' E G, and therefore (considering the preconditions for GO(p,i)), also contains

CLUSTERGO(C,i). Thus the operation CLUSTERGO(C,i+1) of LE(C) is enabled in the

last state at time T+6H-3, unless it has occurred already, since the execution up to time

T+6H-3 contains rec(p',p)READY(p',i) for all p' E specialchildren(p), by the previous stake-

ment, and the execution up to time T+4H-1 contains rec(q',p)CLUSTERSAFE(q',i) for all

q' E Preferred(p), because send(q',p)CLUSTERSAFE(q'i) occurred by time T+4H-2. We

can deduce that CLUSTERGO(C,i+1) occurs in the execution up to time T+6H-2. Exam-

ining the postconditions of whichever occurs last of the operaticns CLUSTERGO(C,i+1),

OK(pi) and rec(p',p)SAFE(p',i) for p' e children(p), we see that each of the operations

GO(p,i1) and send(p,q)PULSE(p,i+1) is enabled in the last state of the system at time

T+6H-2, unless it has occurred already. Therefore each occurs in the execution up to time

T+611-I. The case where k > 1 is straightforward, since then parent(p) has depth k-1, and

so the induction hypothesis says that send(parent(p),p)PULSE(parent(p),i+1) occurs in the

execution up to time T+6H+2k-5, and thus rec(parent(p),p)PULSE(parent(p),i+l) occurs

by time T+611+2k-4. The postconditions of this operation show that each of GO(p,i+l)

and send(p,q)PULSE(p,i+1) is enabled in the last state at time T+611+2k-4, unless it has
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occurred earlier, and so each occurs by time T+6H+2k-3, as required. Q.E.D.

Even without assuming that the system performs actions within time 1, as we did above,

we can show that the system satisfies a liveness condition, as long as each output or inter-

nal operation is performed eventually, once it is enabled. Thus we say that an execution

s0,7rlSl,7r2,.., is admissible if for every i and every operation 7r that is enabled in state si,

there is an index j with j > i such that Irj=ir. The following lemmas have proofs that are

almost identical to those of the two previous lemmas concerning timed executions, except

that references to specific times are deleted, and instead operations are deduced to occur

'eventually'.

Lemma 39 Any admissible execution of DistSysS(G) contains GO(p,1) for all p.

Lemma 40 Suppose i is a positive integer. Any admissible well-formed execution of Dist-

SysS(G) that contains OK(p,i) for every node p, contains GO(p,i+1) for every node p.

7 Summary and Further Directions

In this paper we have offered a formal, rigorous proof of the correctness of Awerbuch's al-

gorithm for network synchronization. We specified both the algorithm and the correctness

condition using the I/O automaton model. Our proof of correctness followed closely the

intuitive arguments made by the designer of the algorithm by exploiting the model's natural

support for such important design techniques as stepwise refinement and modularity. In

particular, since the algorithm uses simpler algorithms for synchronization within and be-

tween 'clusters' of nodes, our proof could have imported as lemmas the correctness of these

simpler algorithms, if these had been proved before. Alternatively, the understanding of the

modularity that the proof gives us would allow us to see how to safely change the choices

of implementation of the separate parts of the synchronizer, independently of one another.

Also, we clearly benefit from having carried out the correctness proof in the I/O automaton

model which supports modularity, since the network synchronizer is often used as an 'off-

the-shelf building block' component in a larger system, and proofs of the correctness of the

system will be able to use our proof without change.

53



i
In the future, we hope to study other network protocols in the same way. We still need

to understand how to use the model to capture the intuition behind other, less clear-cut,

forms of 'modularity'. For example many network algorithms operate over spanning forests

that change with time, and so seem to be hard to represent as intermediate specifications

implemented by collections of automata. Nonetheless, we expect that the I/O automaton

model will provide support for verifying many protocols, once we understand the precise

nature of the modularity.
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Appendix I: The Detailed Code for the Synchronization Al-

gorithm

We give the code for each automaton ND(p) for a non-leader node p, and also for each

automaton LE(C) for the leader node of cluster C. Afterwards, we discuss the code for two

operations, to give the interested reader some feeling for the model. We also discuss the way

our algorithm is developed from the code in [Awl, which is written for an interrupt-driven

model.

Non-leader node: ND(p)

Inputs:

rec(q,p)READY(q,i) for q E children(p), i positive

rec(q,p)CLUSTERSAFE(q,i) for q E Preferred(p) or q - parent(p), i positive

OK(p,i) for i positive

rec(q,p)SAFE(q,i) for q E children(p), i positive

rec(q,p)PULSE(q,i) for q = parent(p), i positive

Outputs:

send(p,q)READY(p,i) for q = parent(p), i positive

send(p,q)CLUSTERSAFE(p,i) for q E children(p) U Preferred(p), i positive

GO(p,i), for i positive
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sendpVqSAFEpFi forKSFKFA'6[W% qI rL parentWp), iJ positive

send (p,q)PSE(p,i) for q = ciren(p), i positive

state:

array CLUSTERSAFErec[q,i], initially all false

array READYrec[q,i], initially all false

array OKrec[i], initially all false

array GOsent[i], initially all false

array SAFErec[q,i], initially all false

array pulse[i], initially all false

multiset mess, initially empty

transitions:

rec (q,p) READY (q,i)

Postconditions

s.READYrec[q,i] = true

if q E specialchildren(p)

and (s'.READYrecjq',i] = true for all q' E (specialchildren(p)-{q}))

and (s'.CLUSTERSAFErec[q',i] = true for all q' E Preferred(p))

then s.mess = s'.rness u {(p,parentkp))READY(p,i)}

rec(q,p) CLUSTERSAFE(q,i)

Postconditions

s.CLUSTERSAFErec[q,i] = true

if q =parent(p)

then s.mess = s'.mess u {(P,P') CLUSTERS AF E(p,i) : p' E spcilc~iildren(p) u Preferred(p)}

if q E Preferred(p)

and (s'.READYrec[q',i] = true for all q' E specialchildren(p))

and (s'.CLUSTERSAFErec[q',i] = true for all q' E (Preferred (p)-{(q)))

then smess = s'.mess u {(p,parent(p))READY(p,i)}
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OK(p,i)

Postconditions

s.OKrec[iI = true

if (s'.SAFErec[q,i] = true for all q E children(p))

then s.mess = s'.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)SAFE(q,i)

Postconditions

s.SAFErec[q,il = true

if (s'.SAFErec[q',i] = true for all q' E childreri(p)-{q}

and s'.OKrec[i] = true)

then s.mess = s.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p) PULSE(q,i)

Postconditions
s.pulsetil = true

smess =s' .mess U {(p,p')PULSE(p,i) p' E children(p)}

send (p,q) READY (p,i)

Preconditions

(p,q)READY(p,i) E s' .mess

Postconditions

s.mess = s'.mess - {(p.q) READY (p,i)}

send (p,q) CLUSTERSAFE(p,i)

Preconditions

(p,q)CLUSTERSAFE(p,i) E s'.mess

Postconditions

s-mess =s' .mess - {(p,q) CLUSTERS A FE(p,i)}
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GO(p,i)

Preconditions

s'.pulse[i] = true

i= 1 or s'.GOsent[i-11 true

s'.GOsent[i] false

Postconditions

s.GOsent[ij= true

send (p,q) SAFE (p,i)

Preconditions

(p,q)SAFE(p,i) E s'.mess

Postconditions

s.mess = s'.mess - {(p,q)SAFE(p,i))

send (p,q)PULSE(p,i)

Preconditions

(p,q)PULSE(p,i) E s'.mess

Postcoriditions

s.mess = s '.mess - {(p,q) PULSE (p,i)}

Leader: LE(C)

Inputs:

rec(q,p)READY(q,i) for p =leader(C), q E children(p), i positive

rec(q,p)CLUSTERSAFE(q,i) for p = eader(C), q E preferred(p), i positive

OK(p,i) for p = leader(C), i positive

rec(q,p)SAFE(q,i) for p = Ieader(C), q E children(p), i positive

Outputs:

CLUSTERCGO(C,i) for i positive
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send (p,q) CLUSTERSAFE(p,i) for p = leader(C), q E children(p) U preferred(p), i positive

GO(p,i), for p = leader(C), i positive

CLUSTEROK(OCi) for i positive

send (p,q) PULSE (p,i) for p = leader(C), q E children(p), i positive

state:

array READYrec[q,i], initially all false

array CLUSTERSAFErec[q,i], initially all false

array clustergo[i], initially all false

array OKrecliJ, initially all false

array GOsent[ij, initially all false

array SAFErec[q,il, initially all false

array clustersafe[i], initially all false

array pulse[i], initially all false

array CLUSTEROKsent[i], initially all false

multiset mess, initially empty

transitions:

rec (q,p) READY (q,i)

Postconditions

s.READYrec~q,ij = true

rec(q,p)CLUSTERSAFE(q,i)

Postconditions

s.CLUSTERSAFErec[q,il true

OK(p,i)

Postconditions

s.OKrecjij = true

if (s'.SAFErec[q,i] = true for all q E children(p))
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then (s.clustersafe[i] = true

if (s'.SAFErec[q,il = true for all q E children(p)

and s'.clustergo[i+1] = true)

then (s.mess =s'.mess U {(p,q) PULSE (p,i +1) :p E children(p)}

and s.pulse[it-1 = true))

rec(q,p)SAFE(q,i)

Postconditions

s.SAFErec[q,i] = true

if (s'.SAFErec[q',i] = true for all q' E children(p)-{q}

and s'.OKrec[i] =true)

then s.clustersafe[i] true

if (s'.SAFEreclq',i] =true for all q' E children(p)-{q}

and s'.OKrec[i] = true and s'.clustergo[i+11 true)

then (s.mess =s'.mess U {(p,q)PULSE(p,i+1) p E children(p)}

and s.pulse[-i-1] =true)

CLUSTERGO(C,i)

Preconditions

i= 1 or ((s'.READYrec~q,i-1] = true for all q E specialchildren(p))

and (s'.CLUSTERSAFErec[q,i-1] true for all q E Preferred(p)))

i = 1 or s'.clustergo[i-1] = tru.~

s'.clustergoi] false

Postconditions

s.clustergoij true

if (i 1 or s'.clustersafe[i-1] true)

then (s.rness =s'.rness u {(p,p')FPULSE(p,i) p' e children(p)}

and s.pulse[II true)

send(p,q)CLUSTI';RSAFE(p,i)
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Preconditions

(p,q)CLUSTERSAFE(p,i) E s'.mess

Postconditions

s.mess = s' .mess - {(p,q)CLUSTERSAFE(p,i)}

GO(p,i)

Preconditions

s'.pulsefil = true

i = 1 or s'.GOsent[i-lj true

s'.GOsentfil false

Postcondit ions

s.GOsentli] true

CLUSTEROK(C,i)

Preconditions

s'.clustersafe[iI = true

s'.CLUSTEROKsent[i] = false

Postcondjtions

s.CLUSTERTOKsent[ii = true

s.mess = s'.mess U {(p,q)CLUSTERSAFE(p,i) q E (specialchildren(p) U Preferred(p))}

send (p,q) PULSE(p,i)

Preconditions

(p,q)PULSE(p,i) E s'.mess

Postconditions

s.mess =s'.rness - {(p,q)PULSE(p,i)}

For each p and q for which (p,q) is an edge of G, we let LI(p,q) be a link automaton
from p to q, for the message set .M described next: if (p,q) is a preferred edge, then .M is
the set of messages CLUSTERSAFE(p,i) for positive i; if p =parent(q) then .M is the set
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of CLUSTERSAFE(p,i) and PULSE(p,i) for positive i; if p E children(q) then .M is the set

of READY(p,i) and SAFE(p,i) for positive i; if (p,q) is neither a preferred edge nor a tree

edge then .M is the empty set (so in this case the link automaton is the trivial automaton

with no operations!).

As an aid in understanding the code above, we consider the pre- and postconditions

for the operation rec(q,p)CLUSTERSAFE(q,i) of the non-leader node automaton ND(p).

This is an input operation, and so it has no preconditions, since it can occur at any time.

When it occurs, the fact that it has happened is recorded in the state by setting the value of

CLUSTERSAFErec[q,i] to true. The other effects depend on whether this is a message being

broadcast over p's own cluster (this is the case if q is p's parent) or whether this is a message

from a neighboring cluster (when q is a neighbor of p over a preferred edge). In the first

case, a CLUSTERSAFE(p,i) message to p' is added to the multiset of outgoing messages, for

each p' among p's children and also for each p' that is a neighbor along a preferred edge. In

the second case, the node checks to see whether all the conditions are now satisfied, in order

to play its part in the convergecast of READY messages. The convergecast can occur if a

READY(q',i) message has been received from every special child q' (as recorded in the state

of the READYrec[q',i] variables) and if a CLUSTERSAFE(q',i) message has been received

from every neighbor q' along a preferred edge (except, of course, for q itself). If all of these

have been received, the node places a READY(p,i) message for its parent, in its buffer of

outgoing messages.

As another example, consider the operation GO(p,i) for a non-leader node p. This can

occur provided the PULSE(q,i) message has arrived from p's parent (a fact reflected by the

variable pulse[il being true) and if the previous GO operation (if any) has already occurred,

and if the GO(p,i) itself has not occurred (this is necessary as the other conditions once true,

remain true forever). The fact that the operation has occurred is reflected in the state by

setting GOsent[iJ to true.

The Relationship to Awerbuch's Original Algorithm

We have given the detailed algorithm for network synchronizatiun by using I/O automata,

where a node changes state after receiving a message, and a message can be sent (and the
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node's state can change accordingly) whenever the send(p,q)M operation is enabled. In his

account, Awerbuch used the interrupt-driven model that is more common among designers of

network algorithms, where the effects of a message receipt include (atomically) both changes

in the state of the node involved and the sending of messages from that node, but where

messages are not generated spontaneously. As the reader can see, we have expressed the

interrupt-driven code 'on receipt of M from q: change the value of variable v from v-old to v-

new = f(v-old), and send M 1 to ql, M 2 to q2 , etc.' by an input operation rec(q,p)M with no

precondition, and postcondition s.v = f(s'.v), s.mess = s'.mess U {(p,ql)Ml,(p,q2)M2,...}.

Also we have, for example, an output operation send(p,ql)M 1 with precondition (p,ql)M1

E '.mess and postcondition s.mess = s'.mess - (p,ql)M1 . Thus our model does not send

out messages atomically on receipt of a trigger message, but rather places them in a multiset

of outgoing messages, and sends them at some later time. We note that this difference is not

important for the correctness of the algorithm. After all, even in the interrupt-driven model,

the time of message receipt is delayed arbitrarily, and so additional uncertainty, about the

delay before the message is sent, does not cause trouble.

Some other differences between our presentation of the algorithm and the original version

in [Aw] should be mentioned. The first is that we have 'hard-wired' the distinction between

the leader of a cluster and other nodes, while Awerbuch gives a uniform algorithm for every

node that branches, depending on whether or not the node is a leader. Also Awerbuch uses

several subroutines that are called from different places, whereas we have included these

'in-line' at every occurrence. Another minor difference is that the events that we call CLUS-

TERGO(C,i) and CLUSTEROK(C,i), and treat as operations of the leader of cluster C, are

regarded by Awerbuch as the leader sending itself a message (PULSE and CLUSTERSAFE,

respectively). None of these differences is at all significant for the correctness or performance

of the algorithm.

There is one respect, however, in which our algorithm is significantly altered from the

one given by Awerbuch. In that version, each node delayed sending the READY message

to its parent until it had received the CLUSTERSAFE message for its own cluster, as well

as the CLUSTERSAFE message for every neighboring cluster along a preferred edge and

the READY message from every child. In contrast, we allow the READY messages to be
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sent without waiting for the cluster itself to be safe. Instead we check only at the leader,

before commencing the broadcast of PULSE messages. We therefore use only the subtree

containing special nodes, rather than the whole tree, for the convergecast. Similarly, the

CLUSTERSAFE messages are broadcast only over the subtree of special nodes. This alter-

ation does not affect correctness, and may improve running time by allowing the convergecast

of READY messages to overlap the broadcast of CLUSTERSAFE messages. It may also

reduce the number of messages sent. The change also makes the verification simpler, as it

increases the degree of independence between the inter- and intracluster synchronization.

Appendix 11: Detailed Code for the Divided Algorithm

Non-leader node: NDOS(p)

Inputs:

rec (q,p) READY (q,i) for q E children(p), i positive

rec(q,p)CLUSTERSAFE(q,i) for q E Preferred(p) or q = parent(p), i positive

Outputs:

send (p,q) READY (p,i) for q = parent(p), i positive

send (p,q) CLUSTERSAF E(p,i) for q E children(p) U Preferred(p), i positive

state:

array CLUSTERSAFErec[q,i], initially all false

array READYrec[q,i], initially all false

multiset mess, initially empty

transitions:

rec(q,p)READY(q,i)

Postconditions I
s.READYrecfq,i] = true
if q E specialchildren(p)

and (s'.READYreclq',i] =true for all q' E (specialchildren(p)-{q)))
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and (s'.CLUSTERSAFErec[q',i] = true for all q' E Preferred(p))

then s.mess = s' .mess U {(p,parent(p))READY(p,i)}

rec(q,p)CLUSTERSAFE(q,i)

Postconditions

s.CLUSTERSAFErec[q,i) = true

if q = parent(p)

then s.mess = s' .mess U {(p,p')CLUSTERSAFE(p,i) :p' E specialchildren(p) U Preferred(p)}

if q E Preferred(p)

and (s'.READYrecfq',i] = true for all q' E specialchildren(p))

and (s'.CLUSTERSAFErec[q',i] = true for all q' E (Preferred (p).{q}))

then s.mess = s'.mess U { (p,parent (p)) READY (p,i)}

send (p,q) READY (p,i)

Preconditions

(p,q)READY(p,i) E s' .ress

Postcondit ions

smess = s' .mess - {(p,q) READY (p,i)}

send (p,q)GCLUSTERSAF E(p,i)

Preconditions

(p,q)CLUSTERSAFE(p,i) C- s'.mess

Postconditions

s.mess = s' .mess - {(p,q)GLUSTERSAFE(p,i)}

Lea der: LECS(C)

Inputs:

CLUSTEROK(C,i) for i positive

rec(q,p) READY (q,i) for p = leader(C), q E 65hildren(p), i positive

65.de



rec(q,p)CLUSTERSAFE(q,i) for p =leader(C), q E preferred(p), i positive

Outputs:

CLUSTERGO(C,i) for i positive

send (p,q) CLUSTERSAFE(p,i) for p = leader(C), q E children(p) u preferred(p), i positive

state:

array READYrec[q,il, initially all false

array CLUSTERSAFErec~q,i], initially all false

array GLUSTERGOsent~i], initially all false

multiset mess, initially empty

transitions:

rec(q,p)READY(q,i)

Postconditions

a.READYrec[q,ij = true

rec(q,p)CLUSTERSAFE(q,i)

Postconditions

s.CLUSTERSAFErec[q,il true

CLUSTEROK(C,i)

Postconditions

s.rness = s' .mess U {(p,q)CLUSTERSAFE(p,i) :q E (specialchildren(p) U Preferred(p)))

* CLUSTERGO(G,i)

Preconditions

i= 1 or ((s'.READYreclq,i-11 = true for all q E specialchildren(p))

and (s '.CLUSTERSAFErec[q,i-l] = true for all q E Preferred(p)))

i= 1 or s'.CLUSTERGOsent[i-1] = true

s'.CLUSTERGOsent[iJ false

Postconditions
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s.CLUSTERGOsent[i] = true

send (p,q) CLUSTERSAF E(p,i)

Preconditions

(p,q)CLUSTERSAFE(p,i) E s'.mess

Postconditions

s.mess = s' .mess - {(p,q)OLUSTERSAFE(p,i)}

Tree Link: LICS(p,q)

If q E children(p), this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).

If q = prn(), this is a link automaton from p to q for the messages READY(p,i). If (p,q) is

a preferred edge, this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).

Otherwise, this is a link automaton for no messages.

Non-leader node: NDSL(p)

Inputs:

OK(p,i) for i positive

rec(q,p)SAFE(q,i) for q E children(p), i positive

*rec (q,p) PULSE (q,i) for q parent(p), i positive

Outputs:

GO(p,i), for i positive

send (p,q) SAFE (p,i) for q =parent(p), i positive

send (p,q) PULS E(p,i) for q E children(p), i positive

* state:

array OKrecfij, initially all false

array GOsent[i], initially all false

array SAFErec(q,i], initially all false

array pulse~ij, initially all false

multiset mess, initially empty
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transitions:

OK(p,i)

Postconditions

s.OKrec~iI true

if (s'.SAFErec[q,ij =true for all q E children(p))

then s.mess = s'.mess u {(pparent(p))SAFE(p,i)}

rec(q,p)SAIFE(q i)

Postconditions

s.SAFErec[q,i] = true

if (s'.SAFErec~q',i] = true for all q' E children(p)-{q}

and s'.OKrec[ij = true)

then smess = s'.mess u {(p,parent(p))SAFE(p,i)}

rec(q,p)PULSE(q,i)

Postconditions

s.pulse[i] = true

s.rness = s'.mess U {(p,p)PULSE(p~i) :p' E children(p)}

GO(p,i)

Preconditions

s'.pulsefiI = true

i= I or s'.GOsent[i-1] true

s'.GOsent[i] false

Postconditions

s.GOsent[i] true

send (p,q)SAFE(p,i)

Preconditions
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transitions:

OK(p,i)

Postconditions

s.OKrec[iI = true

if (9'.SAFErec[q,i] =true for all q E children(p))

then (s.clustersafe[i] = true

if (s'.SAFErec[qi] = true 16r all q E clmldren(p)

and s'.CLUSTERGOrec[i+1] = true)

then (s.mems = s'.m U {(pq)PULSE(p,i+1) : p E childhren(p)}

and s.pulaeI = true))

rec(q,p)SAFE(q,i)

Postconditions

s.SAFErec[qi = true

if (s'.SA.FErec[q',i] = true for all q' E chuldren(p)-{ q)

and s1.OKrecjiJ = true)

then s.clusteraI] true

if (s'.SAFEreclq',i] true for all q' E children(p)-{q}

and s'.OKrec[i] = true and s'.CLUSTERGOrec[i+1] = true)

then (s.mess = 9' .mesa U {(p,q)PULSE(p,i+l) : p E children(p)}

and s.pulse[i+11 = true)

CLUSTERGQ(C,i)

Postconditions

s.CLUSTERGOreefil = true

if (i = I or 9'.clueterafefi-1J true)

then (s.mess = s'.mess U {(p,p')PULSE(p,i): p' E children(p))

and s.pulse[i] = true)
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(p,q)SAFE(p,i) E s'.mess

Postcanditions

s-mess = s' .mess - {(p,q)SAFE(p,i)}

send (p,q) PULSE(p,i)

Preconditions

(p,q)PULSE(p,i) E s'.mess

Postconditions

s.Iness = s' .mess - {(p,q)PULSE(p,i)}

Leader: LESL(O)

Inputs:

OK(p,i) for p = leader(C), i positive

CLUSTERGO(C,i) for i a number

rec(q,p)SAFE(q,i) for p = leader(C), q E children(p), i positive

Outputs:

GO(p,i), for p = leader(C), i positive

CLUSTEROK(C,i) for i positive

send (p,q) PULSE(p,i) for p = leader(C), q E children(p), i positive

state:

array OKrec[i], initially all false

array GOsentij, initially all false

array SAFErec[q,ij, initially all false

array CLUSTERGOrec[i], initially all false

array clustersafefiI, initially all false

array pulseli], initially all false

array CLUSTEROKsent[iI, initially all false

multiset mess, initially empty
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GO(p,i)

Preconditions

s'.pulse[i] = true

i= 1 or s'.GOsent[i-1] true

s'.GOsent[i] =false

Postconditions

s.GOsent[iI true

CLUSTEROK(C,i)

Preconditions

s'.clustersafeli] true

s'.CLUSTEROKsent[i] =false

Postconditions

s.CLUSTERTOKsent[i] true

send (p,q) PULSE (p,i)

Preconditions

(p,q)PULSE(p,i) E s'.mess

Postconditions

s-mess = B' .mess - {(p,q)PULSE(p,i)}

Tree Link: LISL(p,q)

If q E cbildren(p), this is a link automaton from p to q for the messages PULSE(p,i). If q

= parent(p), this is a link automaton from p to q for the messages SAFE(p,i). Otherwise,

this is a link automaton for no messages.
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